Name of the matrix:
Matrix with algebraic decay

Pattern:
 

$\displaystyle a_{ij} = a_{i-j} = \frac{2\pi}{\sigma[4\sigma^2+(i-j)^2]}, \qquad
i,j=0,1,\ldots
$

Properties:
symmetric, positive definite, the asymptotic condition number is

$\displaystyle {\mathrm{cond}}(A) = \cosh(2\pi\sigma)
$

Source/utilization:
test for the solution of linear systems

References:
 
C.V.M. van der Mee, Z.M. Nashed and S. Seatzu, Sampling expansions in unitarily translation invariant reproducing kernel Hilbert spaces, Adv. Comput. Math. 19(4), 355-372 (2003).
C.V.M. van der Mee and S. Seatzu, A method for generating infinite positive self-adjoint test matrices and Riesz bases, SIAM J. Matr. Anal. Appl., to appear.

Matlab:
t=tptest(3,n,sigma)