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Scientific Computation vs. Computer Science

Smale, 1990: Schism or conflict between Scientific Computation
and Computer Science.

Scientific Computation Computer Science

Mathematics continuous discrete
Problems classical newer

Goals practical, immediate long range
Foundations none developed
Complexity undeveloped developed

Machine, model none Turing

Blum, Shub, Smale, 1989: Theory of computation and complexity
over the real numbers, NP-completeness, Recursive Functions,
Universal Machines.

Cortona, September 2008 P. Zellini The Numerical Analysis of Milvio Capovani



Possible links

Milvio Capovani: computational complexity, infomational content,
models of computation (bilinear programs), algebraic theory of
matrices

Analytical approach −→ Combinatorial, algebraic approach

Arithmetizing analysis:
1. Foundations: all analysis could be based logically on a
combination of ordinary arithmetic and passage to the limit
(Weierstrass, Dedekind, Poincaré, Cantor)
2. Fredholm’s theory of integral equations, whose kernels K (x , y)
can be treated as limits of matrices
3. Variational methods: Rayleigh, 1873; Ritz, 1906. Dirichlet
problem: proof of a constructive existence theorem
4. Arithmetizing Analysis in principle −→ Arithmetizing practically,
effective procedures (complexity, error)
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Arithmetizing: Goldstine, von Neumann, Strang

H. Goldstine, J. von Neumann, 1946: “Our problems are usually
given as continuous-variable analytical problems, frequently wholly
or partly of an implicit character. For the purposes of digital
computing they have to be replaced, or rather approximated, by
purely arithmetical “finitistic” explicit (usually step-by-step or
iterative) procedures.” (Compare to Hilbert’s foundational
program)

G. Strang, 1994: “For engineers and social and physical scientists,
linear algebra now fills a place that is often more important than
calculus. My generation of students, and certainly my teachers,
did not see this change coming. It is partly the move from
analog to digital; functions are replaced by vectors. Linear
algebra combines the insight of n−dimensional space with the
applications of matrices”

Arithmetizing −→ matrix computation
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Informational content

Numerical work is often concerned with operations on matrices
belonging to special classes. Within a class the generic matrix is
often specified by a number k of parameters less than the numbers
of elements. → Informational content of a matrix
Measure of informational content: amount of memory required to
store the matrix as compactly as possible in a computer (Forsythe,
1967)

1. Representation of a matrix in a computer (Forsythe)
2. Computational complexity (Capovani, Capriz, Bini, Bevilacqua,
Zellini)
Compare to Chaitin, 1974: complexity of a string of bits as the
minimum length of a program that generates the string

Capriz, Capovani, 1976: Ck
n = class of matrices n × n of

informational content k = manifold of dimension k, k ≤ n2, in the
space of dimension n2 of all real n × n matrices.
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Informational content and computational complexity

The case when Ck
n = is an algebra spanned by k linearly

independent matrices Ji , i = 1, 2, . . . , k

Let A =
∑k

i=1 aiJi , B =
∑k

j=1 bjJj , JiJj =
∑k

h=1 thijJh

thij = multiplication table

AB =
k∑

i ,j=1

aibjJiJj =
k∑

h=1

[
k∑

i ,j=1

thijaibj ]Jh =
k∑

h=1

fh(a, b)Jh

where fh(a, b) =
∑k

i ,j=1 thijaibj = bilinear form in the
indeterminates a, b.

the last formula exhibits possible reductions in computational
complexity
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tensor rank

rk(thij) = rank of the tensor thij in a field F = minimum integer q
such that

thij =

q∑
r=1

uhrvirwjr

for 3q vectors uh, vh,wh, h = 1, 2, . . . , q with elements in F .

If the rank of thij is q, then the coefficients ch of AB are

ch =
k∑

i ,j=1

aibj

q∑
r=1

uhrvirwjr =

q∑
r=1

uhr (
k∑

i=1

aivir ) · (
k∑

j=1

bjvjr )

i.e. q non-scalar multiplications are sufficient (necessary when
commutativity is not assumed) to compute ch. Then the rank of
the tensor thij of the multiplication table of Ck

n defines the
multiplicative complexity of the product of two elements of Ck

n .

Cortona, September 2008 P. Zellini The Numerical Analysis of Milvio Capovani



tensor rank and border rank, approximate algorithms

Let F be a field with infinite elements and T = thij a tensor on F .
rkb(T )= border rank of T = minimum integer t such that, for
every ε > 0 we have a tensor E = ehij , with |ehij | < ε, such that
rk(T + E ) = t.

We have rkb(T ) ≤ rk(T ) and sometimes rkb(T ) < rk(T ). For

T = (

[
1 0
0 1

]
,

[
0 1
0 0

]
)

we have rkb(T ) = 2 and rk(T ) = 3.

Bini, Capovani, Lotti, Romani, 1979-1980, 1981: Complexity of
approximate algorithms, main applications to:
1. band Toeplitz matrices
2. matrix multiplication: algorithm of complexity
O(nw ),w ≤ 2.7798 . . . for solving a system of n linear equations,
improving Strassen’s limit w ≤ log27 = 2.807 . . .
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Algebra τ

Bevilacqua, Capovani, 1972: algebra Ck
n = τ of informational

content k = n

τ5 =


t1 t2 t3 t4 t5
t2 t1 + t3 t2 + t4 t3 + t5 t4
t3 t2 + t4 t1 + t3 + t5 t2 + t4 t3
t4 t3 + t5 t2 + t4 t1 + t3 t2
t5 t4 t3 t2 t1


cross-sum condition: ti−1,j + ti+1,j = ti ,j−1 + ti ,j+1

τ generated over R by the matrix

H =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


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structure and informational content 1

The class τ is now used (like the class of circulant matrices) in
many problems in numerical linear algebra: matrix displacement
decompositions, optimal preconditioning, complexity of Toeplitz
matrices.
τ = example of class Ck

n with k = n obtained by choosing an
orthogonal matrix Q of order n and taking all matrices
G = QDQT where D = arbitrary real diagonal matrix. Compare to
circulant matrices and to Hartley algebra (Bini, Favati, 1993).

Bini, Capovani, 1983: “We try to separate what is related to the
structure of the class from what is related to the specific values
(informational content) of the matrix”

Q → structure
D → informational content

A = QDAQT , A generated by H = QDQT
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structure and informational content 2

For all classes of matrices which are algebras generated by one
matrix H it is possible to accomplish completely such a separation
between the structure and the informational content. In fact, if
H = QDQT and the class is generated by H, then all matrices A
of the class have the form A = QDAQT (and commute with H).

Structure of n−dimensional commutative spaces
∑n

k=1 akJk of
minimal informational content and minimal complexity, where Jk

are (0, 1) matrices with prescribed sum.
Zellini, 1979 and 1985; Grone, Hoffman, Wall, 1982; Bevilacqua,
Zellini, 1989 and 1996, Bevilacqua, Di Fiore, Zellini, 1996;

This theoretical study has inspired numerical research:
preconditioning tecniques, representations of a matrix A as sums of
products of matrices belonging to spaces

∑n
k=1 akJk , using

displacement rank.

Cortona, September 2008 P. Zellini The Numerical Analysis of Milvio Capovani



informational content and bordering 1

Representation of a band symmetric Toeplitz matrix (BST)
ai − aj → i − j

B =



1− 3 2− 4 3 4 0 0 0
2− 4 1 2 3 4 0 0

3 2 1 2 3 4 0
4 3 2 1 2 3 4
0 4 3 2 1 2 3
0 0 4 3 2 1 2− 4
0 0 0 4 3 2− 4 1− 3


∈ τn+2, n = 5

A =


1 2 3 4 0
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
0 4 3 2 1

 = 7-diagonal BST matrix

Cortona, September 2008 P. Zellini The Numerical Analysis of Milvio Capovani



informational content and bordering 2

If µi are the eigenvalues of B, µ1 ≥ µ2 . . . ≥ µn+2, then a
representation of B in the basis I ,H, . . . ,Hn+1 gives the following
representation of a n × n (n even) 7-diagonal BST Toeplitz matrix
A, with elements a1, a2, a3, a4:

A = VPT

[
D1 + µ1v1v

T
1 0

0 D2 + µn+2v2v
T
2

]
PV

where D1 = diag(µ3, µ5, . . . , µn+1), D2 = diag(µ2, µ4, . . . , µn),
P = permutation matrix, and V , vi , i = 1, 2, do not depend on ak .

Bini, Capovani, 1983: The eigenvalues λi of A satisfy
µi+2 ≤ λi ≤ µi

V , vi → structure
µi = linear functions of a1, a2, a3, a4 → informational content
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approximation, unconstrained minimization

Milvio Capovani, fundamental idea: the error in approximation is
not always a cause of failure; by approximating a problem by a
“better” one - where matrix algebras and fast transforms are
involved - we can improve efficiency.
In quasi-Newton methods for unconstrained minimization in Rn an
analogous idea is used to reduce complexity. In fact, in the BFGS
iterative step for min f (x), x ∈ Rn(Bk positive definite)

dk = −B−1
k ∇f (xk),

xk+1 = xk + λkdk

Bk+1 = Φ(Bk , sk , yk)
sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk)

Bk can be approximated, in Frobenius norm, by a matrix with
strong structure (τ , circulant or others), reducing the informational
content sufficient for convergence and leading to O(nlogn)
arithmetic operations per step, instead of O(n2) of BFGS (Di
Fiore, Fanelli, Lepore, Zellini, 2003)
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Winograd-Parlett: FFT via circulants

Rader, 1968; McClellan, Rader, 1979: for n prime, the nontrivial
part of a Fourier transform Fnx is the computation of Cy , where C
is a special circulant of order n − 1 and y ’s elements are a subset
of x ’s elements.
Ciclic convolution on n points as product of two polynomials mod
un−1 − 1 (Winograd, 1978) → real spectral factorization of C
(Parlett, 1982)

C = GDGT

D is block diagonal with 2× 2 and 1× 1 blocks and G ’s elements
are small integers, so G and GT act via additions, and only the
application of D involves genuine multiplications. For n = 5

D = −1

4
⊕ 1

2
(cos

1

5
π + cos

2

5
π)⊕

[
sin 2

5π − sin 1
5π

sin 1
5π sin 2

5π

]
i
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