Dealing with Hamiltonian Structure: Challenges and Successes

David S. Watkins
watkins@math.wsu.edu

Department of Mathematics
Washington State University

Alternating Pencils

Alternating Pencils

$\square\left(\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+A_{0}\right) v=0$

Alternating Pencils

■ $\left(\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+A_{0}\right) v=0$

- alternating, even, odd

Alternating Pencils

■ $\left(\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+A_{0}\right) v=0$

- alternating, even, odd
- Example: anisotropic solids, Lamé equations

Alternating Pencils

$■\left(\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+A_{0}\right) v=0$

- alternating, even, odd
- Example: anisotropic solids, Lamé equations

■ $\left(\lambda^{2} M+\lambda G+K\right) v=0$

Alternating Pencils

$■\left(\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+A_{0}\right) v=0$

- alternating, even, odd
- Example: anisotropic solids, Lamé equations
- $\left(\lambda^{2} M+\lambda G+K\right) v=0$
- large, sparse matrices

Alternating Pencils

$■\left(\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+A_{0}\right) v=0$

- alternating, even, odd
- Example: anisotropic solids, Lamé equations

■ $\left(\lambda^{2} M+\lambda G+K\right) v=0$

- large, sparse matrices
- compute a few smallest eigenvalues

Alternating Pencils

■ $\left(\lambda^{k} A_{k}+\lambda^{k-1} A_{k-1}+\cdots+A_{0}\right) v=0$

- alternating, even, odd
- Example: anisotropic solids, Lamé equations
- $\left(\lambda^{2} M+\lambda G+K\right) v=0$
- large, sparse matrices
- compute a few smallest eigenvalues
- symmetry of spectrum

Spectrum of an Alternating Pencil

Reduction of Order

Reduction of Order
 - (linearization)

Reduction of Order

- (linearization) same as for differential equations

Reduction of Order

- (linearization) same as for differential equations
$w=\lambda v$,

Reduction of Order

- (linearization) same as for differential equations
$\square w=\lambda v, \quad-\lambda M v+M w=0$

Reduction of Order

- (linearization) same as for differential equations

$$
■ w=\lambda v, \quad-\lambda M v+M w=0
$$

$$
\lambda\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]+\left[\begin{array}{cc}
K & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Reduction of Order

- (linearization) same as for differential equations
$\square w=\lambda v, \quad-\lambda M v+M w=0$

$$
\lambda\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]+\left[\begin{array}{cc}
K & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- structure is preserved

Reduction of Order

- (linearization) same as for differential equations
$■ w=\lambda v, \quad-\lambda M v+M w=0$

$$
\lambda\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]+\left[\begin{array}{cc}
K & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- structure is preserved
- Mackey/Mackey/Mehl/Mehrmann

Factorization

Factorization

$$
\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]
$$

Factorization

$$
\begin{gathered}
{\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]} \\
J=\left[\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right]
\end{gathered}
$$

Factorization

$$
\begin{gathered}
{\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]} \\
J=\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right] \\
N=L^{T} J L
\end{gathered}
$$

Factorization

$$
\begin{gathered}
{\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]} \\
J=\left[\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right] \\
-N=L^{T} J L \\
-A-\lambda N \Rightarrow J^{T} L^{-T} A L^{-1}-\lambda I
\end{gathered}
$$

Factorization

$$
\begin{aligned}
& {\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]} \\
& J=\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right] \\
& N=L^{T} J L \\
& -A-\lambda N \quad \Rightarrow \quad J^{T} L^{-T} A L^{-1}-\lambda I \\
& \text { Hamiltonian matrix: } \quad(J H)^{T}=J H
\end{aligned}
$$

Factorization

$$
\begin{gathered}
{\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]} \\
J=\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]
\end{gathered}
$$

■ $N=L^{T} J L$
■ $A-\lambda N \quad \Rightarrow \quad J^{T} L^{-T} A L^{-1}-\lambda I$

- Hamiltonian matrix: $\quad(J H)^{T}=J H$

■ Hamiltonian matrix \Leftrightarrow alternating pencil

Special Case

Special Case

$$
\lambda\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]+\left[\begin{array}{cc}
K & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Special Case

$$
\begin{aligned}
& \lambda\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]+\left[\begin{array}{cc}
K & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]}
\end{aligned}
$$

Special Case

$$
\begin{gathered}
\lambda\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]+\left[\begin{array}{cc}
K & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
G & M \\
-M & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]^{T}\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & M
\end{array}\right]} \\
H=J\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & M^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\frac{1}{2} G & I
\end{array}\right]
\end{gathered}
$$

$$
H=J\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & M^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\frac{1}{2} G & I
\end{array}\right]
$$

$$
H=J\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & M^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\frac{1}{2} G & I
\end{array}\right]
$$

- Don't form H explicitly.

$$
H=J\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & M^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\frac{1}{2} G & I
\end{array}\right]
$$

- Don't form H explicitly.
- Use a Krylov subspace method.

$$
H=J\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & M^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\frac{1}{2} G & I
\end{array}\right]
$$

- Don't form H explicitly.
- Use a Krylov subspace method.
- But we want the smallest eigenvalues.

$$
H=J\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
K & 0 \\
0 & M^{-1}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\frac{1}{2} G & I
\end{array}\right]
$$

- Don't form H explicitly.
- Use a Krylov subspace method.
\square But we want the smallest eigenvalues.

$$
H^{-1}=\left[\begin{array}{cc}
I & 0 \\
\frac{1}{2} G & I
\end{array}\right]\left[\begin{array}{cc}
K^{-1} & 0 \\
0 & M
\end{array}\right]\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right] J^{T}
$$

LQG Control Problem

LQG Control Problem
 $\square \dot{x}=A x+B u$

LQG Control Problem

■ $\dot{x}=A x+B u$
$\square I(x, u)=\int_{0}^{\infty}\left[\frac{1}{2} x^{T} Q x+x^{T} S u+\frac{1}{2} u^{T} R u\right] d t$

LQG Control Problem

■ $\dot{x}=A x+B u$
$\square I(x, u)=\int_{0}^{\infty}\left[\frac{1}{2} x^{T} Q x+x^{T} S u+\frac{1}{2} u^{T} R u\right] d t$
$\square L(x, u, \mu)=I(x, u)+\int_{0}^{\infty} \mu^{T}(\dot{x}-A x-B u) d t$

LQG Control Problem

■ $\dot{x}=A x+B u$
$\square I(x, u)=\int_{0}^{\infty}\left[\frac{1}{2} x^{T} Q x+x^{T} S u+\frac{1}{2} u^{T} R u\right] d t$
$\square L(x, u, \mu)=I(x, u)+\int_{0}^{\infty} \mu^{T}(\dot{x}-A x-B u) d t$
$\left[\begin{array}{rrl}0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\dot{x} \\ \dot{\mu} \\ \dot{u}\end{array}\right]-\left[\begin{array}{ccc}Q & -A^{T} & S \\ -A & 0 & -B \\ S^{T} & -B^{T} & R\end{array}\right]\left[\begin{array}{l}x \\ \mu \\ u\end{array}\right]=0$

LQG Control Problem

- $\dot{x}=A x+B u$
$\square I(x, u)=\int_{0}^{\infty}\left[\frac{1}{2} x^{T} Q x+x^{T} S u+\frac{1}{2} u^{T} R u\right] d t$
- $L(x, u, \mu)=I(x, u)+\int_{0}^{\infty} \mu^{T}(\dot{x}-A x-B u) d t$
$\left[\begin{array}{rrl}0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\dot{x} \\ \dot{\mu} \\ \dot{u}\end{array}\right]-\left[\begin{array}{ccc}Q & -A^{T} & S \\ -A & 0 & -B \\ S^{T} & -B^{T} & R\end{array}\right]\left[\begin{array}{l}x \\ \mu \\ u\end{array}\right]=0$
- skew-symmetric/symmetric

Associated eigenvalue problem

Associated eigenvalue problem

$$
\lambda\left[\begin{array}{rrr}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w \\
y
\end{array}\right]-\left[\begin{array}{ccc}
Q & -A^{T} & S \\
-A & 0 & -B \\
S^{T} & -B^{T} & R
\end{array}\right]\left[\begin{array}{l}
v \\
w \\
y
\end{array}\right]=0
$$

Associated eigenvalue problem

$$
\lambda\left[\begin{array}{rrr}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w \\
y
\end{array}\right]-\left[\begin{array}{ccc}
Q & -A^{T} & S \\
-A & 0 & -B \\
S^{T} & -B^{T} & R
\end{array}\right]\left[\begin{array}{l}
v \\
w \\
y
\end{array}\right]=0
$$

$$
H=\left[\begin{array}{cc}
A-B R^{-1} S^{T} & B R^{-1} B^{T} \\
Q+S R^{-1} S^{T} & -A^{T}+S R^{-1} B^{T}
\end{array}\right]
$$

Associated eigenvalue problem

$$
\lambda\left[\begin{array}{rrr}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w \\
y
\end{array}\right]-\left[\begin{array}{ccc}
Q & -A^{T} & S \\
-A & 0 & -B \\
S^{T} & -B^{T} & R
\end{array}\right]\left[\begin{array}{l}
v \\
w \\
y
\end{array}\right]=0
$$

$$
H=\left[\begin{array}{cc}
A-B R^{-1} S^{T} & B R^{-1} B^{T} \\
Q+S R^{-1} S^{T} & -A^{T}+S R^{-1} B^{T}
\end{array}\right]
$$

- Stable invariant subspace is wanted.

Associated eigenvalue problem

$$
\lambda\left[\begin{array}{rrr}
0 & I & 0 \\
-I & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w \\
y
\end{array}\right]-\left[\begin{array}{ccc}
Q & -A^{T} & S \\
-A & 0 & -B \\
S^{T} & -B^{T} & R
\end{array}\right]\left[\begin{array}{l}
v \\
w \\
y
\end{array}\right]=0
$$

$$
H=\left[\begin{array}{cc}
A-B R^{-1} S^{T} & B R^{-1} B^{T} \\
Q+S R^{-1} S^{T} & -A^{T}+S R^{-1} B^{T}
\end{array}\right]
$$

\square Stable invariant subspace is wanted.

- complete eigensystem

Working Directly with the Pencil

Working Directly with the Pencil

■ Hamiltonian \Leftrightarrow alternating pencil
■ $M-\lambda N$

Working Directly with the Pencil

■ Hamiltonian \Leftrightarrow alternating pencil
■ $M-\lambda N$

- symplectic \Leftrightarrow palindromic pencil
- $G-\lambda G^{T}$

Working Directly with the Pencil

■ Hamiltonian \Leftrightarrow alternating pencil

- $M-\lambda N$
- symplectic \Leftrightarrow palindromic pencil
$-G-\lambda G^{T}$
- Schröder (Ph.D. 2008)

Working Directly with the Pencil

■ Hamiltonian \Leftrightarrow alternating pencil

- $M-\lambda N$
- symplectic \Leftrightarrow palindromic pencil
- $G-\lambda G^{T}$
- Schröder (Ph.D. 2008)
- Kressner/Schröder/Watkins (2008)

Working with Hamiltonian Matrices

Working with Hamiltonian Matrices

- symplectic matrix: $\quad S^{T} J S=J$

Working with Hamiltonian Matrices

- symplectic matrix: $\quad S^{T} J S=J$
- symplectic similarity transformations

Working with Hamiltonian Matrices

- symplectic matrix: $\quad S^{T} J S=J$
- symplectic similarity transformations
- orthogonal symplectic transformations

Working with Hamiltonian Matrices

- symplectic matrix: $\quad S^{T} J S=J$
- symplectic similarity transformations
- orthogonal symplectic transformations
- isotropic subspace: $\quad U^{T} J U=0$

Working with Hamiltonian Matrices

- symplectic matrix: $\quad S^{T} J S=J$
- symplectic similarity transformations
- orthogonal symplectic transformations
- isotropic subspace: $\quad U^{T} J U=0$
- isotropy and symplectic matrices

Difficulty Obtaining Hessenberg Form

Difficulty Obtaining Hessenberg Form
 - PVL form (1981)

Difficulty Obtaining Hessenberg Form

- PVL form (1981)
- the desired Hessenberg form

Difficulty Obtaining Hessenberg Form

$■$ PVL form (1981)

- the desired Hessenberg form
- Byers (1983)

Difficulty Obtaining Hessenberg Form

$■$ PVL form (1981)

- the desired Hessenberg form
- Byers (1983)
- getting an isotropic Krylov subspace?

Difficulty Obtaining Hessenberg Form

$■$ PVL form (1981)

- the desired Hessenberg form
- Byers (1983)
- getting an isotropic Krylov subspace?
- Ammar/Mehrmann (1991)

Difficulty Obtaining Hessenberg Form

$■$ PVL form (1981)

- the desired Hessenberg form
- Byers (1983)
- getting an isotropic Krylov subspace?
- Ammar/Mehrmann (1991)
- new ideas needed

Skew-Hamiltonian matrices ...

Skew-Hamiltonian matrices are easier

Skew-Hamiltonian matrices are easier

- skew-Hamiltonian matrix: $\quad(J K)^{T}=-(J K)$

Skew-Hamiltonian matrices are easier

- skew-Hamiltonian matrix: $\quad(J K)^{T}=-(J K)$
- H^{2}

Skew-Hamiltonian matrices are easier

- skew-Hamiltonian matrix: $\quad(J K)^{T}=-(J K)$
- H^{2}
- more and bigger invariant subspaces

Skew-Hamiltonian matrices are easier

- skew-Hamiltonian matrix: $\quad(J K)^{T}=-(J K)$
- H^{2}
- more and bigger invariant subspaces
- Krylov subspaces are automatically isotropic.

Skew-Hamiltonian matrices are easier

- skew-Hamiltonian matrix: $\quad(J K)^{T}=-(J K)$
- H^{2}
- more and bigger invariant subspaces
- Krylov subspaces are automatically isotropic.
- reduction to Hessenberg form

Skew-Hamiltonian matrices are easier

- skew-Hamiltonian matrix: $\quad(J K)^{T}=-(J K)$
- H^{2}
- more and bigger invariant subspaces
- Krylov subspaces are automatically isotropic.
- reduction to Hessenberg form
- make use of H^{2}

Symplectic $U R V$ Decomposition

Symplectic $U R V$ Decomposition

$■ H=U R_{1} V^{T}=V R_{2} U^{T}$

Symplectic $U R V$ Decomposition

$■ H=U R_{1} V^{T}=V R_{2} U^{T}$

- $R_{1}=\left[\begin{array}{cc}S & B \\ 0 & T^{T}\end{array}\right]$ and $R_{2}=\left[\begin{array}{rc}-T & B^{T} \\ 0 & -S^{T}\end{array}\right]$

Symplectic $U R V$ Decomposition

■ $H=U R_{1} V^{T}=V R_{2} U^{T}$

- $R_{1}=\left[\begin{array}{cc}S & B \\ 0 & T^{T}\end{array}\right]$ and $R_{2}=\left[\begin{array}{rr}-T & B^{T} \\ 0 & -S^{T}\end{array}\right]$
- H^{2}

Symplectic $U R V$ Decomposition

■ $H=U R_{1} V^{T}=V R_{2} U^{T}$

- $R_{1}=\left[\begin{array}{cc}S & B \\ 0 & T^{T}\end{array}\right]$ and $R_{2}=\left[\begin{array}{rr}-T & B^{T} \\ 0 & -S^{T}\end{array}\right]$
- H^{2}
- eigenvalues of H

Symplectic $U R V$ Decomposition

■ $H=U R_{1} V^{T}=V R_{2} U^{T}$

- $R_{1}=\left[\begin{array}{cc}S & B \\ 0 & T^{T}\end{array}\right]$ and $R_{2}=\left[\begin{array}{rr}-T & B^{T} \\ 0 & -S^{T}\end{array}\right]$
- H^{2}
- eigenvalues of H
- Benner/Mehrmann/Xu (199X)

CLM Method

CLM Method

■ Chu/Liu/Mehrmann (2004)

CLM Method

■ Chu/Liu/Mehrmann (2004)

- $H \leftarrow U^{T} H U$

CLM Method

■ Chu/Liu/Mehrmann (2004)

- $H \leftarrow U^{T} H U$
- H^{2} has special structure.

CLM Method

■ Chu/Liu/Mehrmann (2004)

- $H \leftarrow U^{T} H U$
- H^{2} has special structure.
- span $\left\{e_{1}\right\}$ invariant under H^{2}

CLM Method

■ Chu/Liu/Mehrmann (2004)

- $H \leftarrow U^{T} H U$
- H^{2} has special structure.
- span $\left\{e_{1}\right\}$ invariant under H^{2}
$\Rightarrow \operatorname{span}\left\{e_{1}, H e_{1}\right\}$ invariant under H

CLM Method

■ Chu/Liu/Mehrmann (2004)

- $H \leftarrow U^{T} H U$
- H^{2} has special structure.
- span $\left\{e_{1}\right\}$ invariant under H^{2}
$\Rightarrow \operatorname{span}\left\{e_{1}, H e_{1}\right\}$ invariant under H
\square Extract 1-D isotropic invariant subspace.

CLM Method

■ Chu/Liu/Mehrmann (2004)

- $H \leftarrow U^{T} H U$
- H^{2} has special structure.
$-\operatorname{span}\left\{e_{1}\right\}$ invariant under H^{2}
$\Rightarrow \operatorname{span}\left\{e_{1}, H e_{1}\right\}$ invariant under H
- Extract 1-D isotropic invariant subspace.
- Build an orthogonal symplectic similarity transformation.

CLM Method

■ Chu/Liu/Mehrmann (2004)

- $H \leftarrow U^{T} H U$
- H^{2} has special structure.
- span $\left\{e_{1}\right\}$ invariant under H^{2}
$\Rightarrow \operatorname{span}\left\{e_{1}, H e_{1}\right\}$ invariant under H
\square Extract 1-D isotropic invariant subspace.
- Build an orthogonal symplectic similarity transformation.
- Deflate. (many details skipped)

Block CLM Method

Block CLM Method

- CLM works surprisingly well.

Block CLM Method

- CLM works surprisingly well.
- difficulties with clusters

Block CLM Method

- CLM works surprisingly well.
- difficulties with clusters
- Block CLM,

Block CLM Method

- CLM works surprisingly well.
- difficulties with clusters

■ Block CLM, Mehrmann/Schröder/Watkins (2008)

Block CLM Method

- CLM works surprisingly well.
- difficulties with clusters
- Block CLM, Mehrmann/Schröder/Watkins (2008)
- \mathcal{S} invariant under H^{2}

Block CLM Method

- CLM works surprisingly well.
- difficulties with clusters
- Block CLM, Mehrmann/Schröder/Watkins (2008)
- \mathcal{S} invariant under H^{2}
$\Rightarrow \operatorname{span}\{\mathcal{S}, H \mathcal{S}\}$ invariant under H

Block CLM Method

■ CLM works surprisingly well.

- difficulties with clusters

■ Block CLM, Mehrmann/Schröder/Watkins (2008)
$-\mathcal{S}$ invariant under H^{2}
$\Rightarrow \operatorname{span}\{\mathcal{S}, H \mathcal{S}\}$ invariant under H
■ Extract k-dimensional isotropic invariant subspace.

Block CLM Method

■ CLM works surprisingly well.

- difficulties with clusters

■ Block CLM, Mehrmann/Schröder/Watkins (2008)
$-\mathcal{S}$ invariant under H^{2}
$\Rightarrow \operatorname{span}\{\mathcal{S}, H \mathcal{S}\}$ invariant under H
$■$ Extract k-dimensional isotropic invariant subspace.
\square This is

Block CLM Method

■ CLM works surprisingly well.

- difficulties with clusters

■ Block CLM, Mehrmann/Schröder/Watkins (2008)

- \mathcal{S} invariant under H^{2}
$\Rightarrow \operatorname{span}\{\mathcal{S}, H \mathcal{S}\}$ invariant under H
$■$ Extract k-dimensional isotropic invariant subspace.
\square This is more robust,

Block CLM Method

■ CLM works surprisingly well.

- difficulties with clusters

■ Block CLM, Mehrmann/Schröder/Watkins (2008)

- \mathcal{S} invariant under H^{2}
$\Rightarrow \operatorname{span}\{\mathcal{S}, H \mathcal{S}\}$ invariant under H
$■$ Extract k-dimensional isotropic invariant subspace.
\square This is more robust, more efficient,

Block CLM Method

■ CLM works surprisingly well.

- difficulties with clusters
- Block CLM, Mehrmann/Schröder/Watkins (2008)
$-\mathcal{S}$ invariant under H^{2}
$\Rightarrow \operatorname{span}\{\mathcal{S}, H \mathcal{S}\}$ invariant under H
$■$ Extract k-dimensional isotropic invariant subspace.
- This is more robust, more efficient, but we're still working on it.

