On tridiagonal matrices unitary equivalent with normal matrices

Raf Vandebril

Departement of Computer Science
K.U.Leuven

Cortona 2008

Contents

(1) Unitary Equivalence relation

- Householder equivalence tridiagonalization
- Lanczos equivalence tridiagonalization
- Essential uniqueness
(2) The normal case
- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties
(3) Associated Krylov spaces
- Krylov subspaces
- Krylov matrices
- Examples
(4) Eigenvalues and singular values
(5) Conclusions

Outline

(1) Unitary Equivalence relation

- Householder equivalence tridiagonalization
- Lanczos equivalence tridiagonalization
- Essential uniqueness

The normal case

- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties

Associated Krylov spaces

- Krylov subspaces
- Krylov matrices
- ExamplesEigenvalues and singular values
Conclusions

Householder equivalence tridiagonalization

Given $A \in \mathbb{C}^{n \times n}, U_{k}$ and V_{k} Householder transformations:

$$
U_{k}^{H} \mathbf{x}=\omega\|\mathbf{x}\| \mathbf{e}_{1},|\omega|=1, \quad \text { and } \quad V_{k}^{H} \mathbf{y}=\sigma\|\mathbf{y}\| \mathbf{e}_{1},|\sigma|=1 .
$$

Algorithm (Householder equivalence tridiagonalization)

The algorithm computes $U^{H} A V=T$, with T tridiagonal, U and V unitary.

For $k=1: n-2$
Compute the Householder reflector $U_{k}=I-\alpha \mathbf{v} \mathbf{v}^{H}$, based on $A(k+1: n, k)$
$A(k+1: n, k: n)=U_{k}^{H} A(k+1: n, k: n)$
Compute the Householder reflector $V_{k}=I-\beta \mathbf{w w}^{H}$, based on $A(k, k+1: n)^{H}$

$$
A(k: n, k+1: n)=A(k: n, k+1: n) V_{k}
$$

end

Lanczos equivalence tridiagonalization

Suppose $U^{H} A V=T$, having diagonal elements α_{i}, subdiagonals β_{i} and superdiagonals γ_{i} and $U=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right]$ and $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$. Based on

$$
A V=U T \quad \text { and } \quad A^{H} U=V T^{H}
$$

we get

$$
\begin{align*}
A \mathbf{v}_{k} & =\gamma_{k-1} \mathbf{u}_{k-1}+\alpha_{k} \mathbf{u}_{k}+\beta_{k} \mathbf{u}_{k+1} \tag{1}\\
A^{H} \mathbf{u}_{k} & =\bar{\beta}_{k-1} \mathbf{v}_{k-1}+\bar{\alpha}_{k} \mathbf{v}_{k}+\bar{\gamma}_{k} \mathbf{v}_{k+1}, \tag{2}
\end{align*}
$$

Rewriting (1) and (2) gives us (with $\alpha_{k}=\mathbf{u}_{k}^{H} A \mathbf{v}_{k}=\overline{\mathbf{v}_{k}^{H} A^{H} \mathbf{u}_{k}}$):

$$
\begin{aligned}
\mathbf{r}_{k+1} & =A \mathbf{v}_{k}-\gamma_{k-1} \mathbf{u}_{k-1}-\alpha_{k} \mathbf{u}_{k}, \\
\mathbf{s}_{k+1} & =A^{H} \mathbf{u}_{k}-\bar{\beta}_{k-1} \mathbf{v}_{k-1}-\bar{\alpha}_{k} \mathbf{v}_{k} .
\end{aligned}
$$

Hence $\beta_{k}=\left\|\mathbf{r}_{k+1}\right\|_{2}, \mathbf{u}_{k+1}=\mathbf{r}_{k+1} / \beta_{k}$ and $\gamma_{k}=\left\|\mathbf{s}_{k+1}\right\|_{2}$,
$\mathbf{v}_{k+1}=\mathbf{s}_{k+1} / \gamma_{k}$.

Lanczos equivalence Tridiagonalization

Algorithm (Lanczos equivalence tridiagonalization)

The algorithm computes "theoretically" $U^{H} A V=T$, with T tridiagonal, U and V unitary.

Initialize \mathbf{u}_{1} and \mathbf{v}_{1}. $\left(E . g ., \mathbf{u}_{1}=\mathbf{e}_{1}=\mathbf{v}_{1}.\right)$

$$
\begin{aligned}
& \text { for } k=1: n-1 \\
& \qquad \begin{array}{l}
\alpha_{k}=\mathbf{u}_{k}^{H} A \mathbf{v}_{k} \\
\quad \mathbf{r}=A \mathbf{v}_{k}-\gamma_{k-1} \mathbf{u}_{k-1}-\alpha_{k} \mathbf{u}_{k} \\
\mathbf{s}=A^{H} \mathbf{u}_{k}-\bar{\beta}_{k-1} \mathbf{v}_{k-1}-\bar{\alpha}_{k} \mathbf{v}_{k} \\
\beta_{k}=\omega\|\mathbf{r}\|_{2}, \quad \gamma_{k}=\sigma\|\mathbf{s}\|_{2} \quad(\omega, \sigma \text { are free, }|\omega|=|\sigma|=1) \\
\\
\text { end } \\
\mathbf{u}_{k+1}=\mathbf{r} / \beta_{k}, \quad \mathbf{v}_{k+1}=\mathbf{s} / \gamma_{k}
\end{array}
\end{aligned}
$$

Essential uniqueness: Case 1

Case 1: sub- and superdiagonal elements different from zero.

Theorem

$A \in \mathbb{C}^{n \times n}, U, V$ unitary, T, S tridiagonal:

$$
T=U^{H} A V, \quad S=\hat{U}^{H} A \hat{V} .
$$

sub- and superdiagonal elements different from zero.
When

$$
U \mathbf{e}_{1}=\hat{\omega} \hat{U} \mathbf{e}_{1}, \quad V \mathbf{e}_{1}=\omega \hat{V} \mathbf{e}_{2}, \quad\left|\omega_{1}\right|=\left|\hat{\omega}_{1}\right|=1 .
$$

then unitary diagonal D and \hat{D} exist, such that

$$
V D=\hat{V}, \quad U \hat{D}=\hat{U} \quad \text { and } \quad|T|=|S| .
$$

Essential uniqueness: Case 2

Case 2: sub- and superdiagonal elements can be zero.

Theorem

Same assumptions as before;

$$
K=\min \left\{i \mid s_{i+1, i}=0\right\}, \quad \text { and } \quad L=\min \left\{i \mid s_{i, i+1}=0\right\} .
$$

Then we have three different cases:

- $K<L$.
- Columns 1 up to K of U and \hat{U} are essentially unique.
- Columns 1 up to $K+1$ of V and \hat{V} are essentially unique.
- For $1 \leq k \leq K$ and $1 \leq I \leq K+1:\left|t_{k, I}\right|=\left|s_{k, I}\right|$.
- $L<K$. Similar.
- $K=$ L. Similar.

Essential uniqueness: Case 2

Below the resulting T is depicted: The \boxtimes denote the essentially unique parts.

$K<L$ and $K=3$	$K>L$ and $L=3$	$K=L=3$
$\left[\begin{array}{ccccc}\boxtimes & \boxtimes & & & \\ \boxtimes & \boxtimes & \boxtimes & & \\ & \boxtimes & \boxtimes & \boxtimes & \\ & & 0 & \times & \times \\ & & & \times & \times\end{array}\right]$	$\left[\begin{array}{ccccc}\boxtimes & \boxtimes & & & \\ \boxtimes & \boxtimes & \boxtimes & & \\ & \boxtimes & \boxtimes & 0 & \\ & & \boxtimes & \times & \times \\ & & & \times & \times\end{array}\right]$	$\left[\begin{array}{ccccc}\boxtimes & \boxtimes & & & \\ \boxtimes & \boxtimes & \boxtimes & & \\ & \boxtimes & \boxtimes & 0 & \\ & & 0 & \times & \times \\ & & & \times & \times\end{array}\right]$

Outline

(1)
Unitary Equivalence relation

- Householder equivalence tridiagonalization
- Lanczos equivalence tridiagonalization
- Essential uniqueness
(2) The normal case
- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties
(3) Associated Krylov spaces
- Krylov subspaces
- Krylov matrices
- Examples
(4) Eigenvalues and singular values
(5) Conclusions

Main theorem

Theorem

Given a normal $A \in \mathbb{C}^{n \times n}$.
For U, V, with $U \mathbf{e}_{1}=\omega V \mathbf{e}_{1}(|\omega|=1)$ such that

$$
U^{H} A V=T
$$

with T tridiagonal having

$$
\begin{array}{rrr}
\text { subdiagonal elements } & \beta_{i}, \\
\text { superdiagonal elements } & \gamma_{i} .
\end{array}
$$

We have (assume γ_{i} and β_{i} different from 0):

$$
\left|\beta_{i}\right|=\left|\gamma_{i}\right|, \quad \forall i=1, \ldots, n-1 .
$$

In case a γ_{i} and/or β_{i} is zero, a sort of restart or equivalently and extra relation needs to be put on U and V.

Comments on the proof

By induction on k (three steps):
(-) $\left|\gamma_{k}\right|=\left|\beta_{k}\right|$.
(2) A recurrence in bivariate polynomials is proven for $A^{H} \mathbf{u}_{k+1}$ and $A \mathbf{v}_{k+1}$:

$$
\begin{aligned}
A^{H} \mathbf{u}_{k+1} & =\frac{1}{\beta_{1: k}}\left(A^{H} \frac{\beta_{1: k-1}}{\overline{\gamma_{1: k-1}}} \bar{p}_{k}\left(A^{H}, A\right)-\beta_{k-1} \gamma_{k-1} p_{k-1}\left(A, A^{H}\right)-\alpha_{k} p_{k}\left(A, A^{H}\right)\right) \mathbf{v}_{1} \\
& =\frac{1}{\beta_{1: k}} p_{k+1}\left(A, A^{H}\right) \mathbf{v}_{1}
\end{aligned}
$$

and a similar relation

$$
\begin{gathered}
A \mathbf{v}_{k+1}=\frac{1}{\bar{\gamma}_{1: k}} \bar{p}_{k+1}\left(A^{H}, A\right) \mathbf{v}_{1}, \\
\beta_{0}=\gamma_{0}=0, p_{0}=0 \text { and } p_{1}(x, y)=y .
\end{gathered}
$$

(3) Based on these results we get $\left\|A \mathbf{v}_{k+1}\right\|_{2}=\left\|A^{H} \mathbf{u}_{k+1}\right\|_{2}$.

This has also consequences on the implementation.

Scalar product spaces

- For A normal we have a factorization

$$
U^{H} A V=T=S D
$$

with S complex symmetric and D unitary diagonal.

Scalar product spaces

- For A normal we have a factorization

$$
U^{H} A V=T=S D
$$

with S complex symmetric and D unitary diagonal.

- Consider the bilinear form (Ω is a weight matrix):

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{\Omega}=\mathbf{x}^{T} \Omega \mathbf{y} .
$$

The adjoint of A w.r.t. $\langle\cdot, \cdot\rangle_{\Omega}$ is A^{\star} :

$$
\langle A \mathbf{x}, \mathbf{y}\rangle_{\Omega}=\left\langle\mathbf{x}, A^{\star} \mathbf{y}\right\rangle_{\Omega}, \quad \text { for } \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}
$$

A closed formula:

$$
A^{\star}=\Omega^{-1} A^{T} \Omega
$$

Scalar product spaces

- For A normal we have a factorization

$$
U^{H} A V=T=S D
$$

with S complex symmetric and D unitary diagonal.

- Consider the bilinear form (Ω is a weight matrix):

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{\Omega}=\mathbf{x}^{T} \Omega \mathbf{y} .
$$

The adjoint of A w.r.t. $\langle\cdot, \cdot\rangle_{\Omega}$ is A^{\star} :

$$
\langle A \mathbf{x}, \mathbf{y}\rangle_{\Omega}=\left\langle\mathbf{x}, A^{\star} \mathbf{y}\right\rangle_{\Omega}, \quad \text { for } \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}
$$

A closed formula:

$$
A^{\star}=\Omega^{-1} A^{T} \Omega
$$

- It is easily checked that for $\Omega=D$:

$$
\begin{aligned}
T^{\star} & =D^{-1} T^{T} D \\
& =D^{-1}(S D)^{T} D \\
& =T
\end{aligned}
$$

Hence, T is self-adjoint w.r.t. $\langle\cdot, \cdot\rangle_{D}$.

Some corollaries

Compact formulation of the main theorem.

Theorem

For $A \in \mathbb{C}^{n \times n}$ normal and $U^{H} A V=T$, satisfying the conditions above we get: T is self-adjoint w.r.t. $\langle\cdot, \cdot\rangle_{\Omega}$, with Ω a unitary diagonal matrix.

Some corollaries

Compact formulation of the main theorem.

Theorem

For $A \in \mathbb{C}^{n \times n}$ normal and $U^{H} A V=T$, satisfying the conditions above we get: T is self-adjoint w.r.t. $\langle\cdot, \cdot\rangle_{\Omega}$, with Ω a unitary diagonal matrix.

We have an even stronger result.

Theorem

For $A \in \mathbb{C}^{n \times n}$ normal and Ω a unitary diagonal.
There exists U and $V \ldots$ such that $U^{H} A V=T$ is tridiagonal and T is self-adjoint w.r.t. $\langle\cdot, \cdot\rangle_{\Omega}$.

Specific reductions

Construct the unitary matrices U and V such that $U^{H} A V=T$.

- T is tridiagonal having superdiagonals γ_{i} and subdiagonals β_{i} :
(1) $\gamma_{i}=\beta_{i} \quad$ Symmetric reduction.
(2) $\gamma_{i}= \pm \beta_{i} \quad$ Pseudo-Symmetric reduction.
(3) $\gamma_{i}=-\beta_{i} \quad$ Skew-Symmetric reduction.
(4) $\gamma_{i}=\bar{\beta}_{i} \quad$ Hermitian reduction.
(5) $\gamma_{i}= \pm \bar{\beta}_{i} \quad$ Pseudo-Hermitian reduction.
(6) $\gamma_{i}=-\bar{\beta}_{i} \quad$ Skew-Hermitian reduction.

Specific reductions

Construct the unitary matrices U and V such that $U^{H} A V=T$.

- T is tridiagonal having superdiagonals γ_{i} and subdiagonals β_{i} :
(1) $\gamma_{i}=\beta_{i} \quad$ Symmetric reduction.
(2) $\gamma_{i}= \pm \beta_{i} \quad$ Pseudo-Symmetric reduction.
(3) $\gamma_{i}=-\beta_{i} \quad$ Skew-Symmetric reduction.
(4) $\gamma_{i}=\bar{\beta}_{i} \quad$ Hermitian reduction.
(5) $\gamma_{i}= \pm \bar{\beta}_{i} \quad$ Pseudo-Hermitian reduction.
(6) $\gamma_{i}=-\bar{\beta}_{i} \quad$ Skew-Hermitian reduction.
- Examples of the nomenclature: (all related to certain $\langle\cdot, \cdot\rangle_{\Omega}$ [2×Mackey + Tisseur, SIMAX, 2005])
(1) Signature matrix: D has ± 1 on the diagonal.
(2) Pseudo-symmetric: $A=S D$, with S symmetric, D signature matrix.
(3) Complex pseudo skew-symmetric: $A=S D, S$ complex skew-symmetric, D a signature matrix.

Structure of the resulting tridiagonal matrix

Left: specific normal matrices.
Top: type of reduction performed, with relation between γ_{i} and β_{i}.

Matrix	\mathbb{F}	Arb. (Ω) $\left\|\gamma_{i}\right\|=\left\|\beta_{i}\right\|$	$\begin{gathered} \text { Sym. }(\Omega=l) \\ \gamma_{i}=\beta_{i}, \quad \gamma_{i}, \beta_{i} \in \mathbb{R} \end{gathered}$	Pseu.-Sym. $(\Omega=D)$ $\gamma_{i}= \pm \beta_{i}, \quad \gamma_{i}, \beta_{i} \in \mathbb{R}$	$\begin{aligned} & \text { Sk.-Sym. }(\Omega=\Sigma) \\ & \gamma_{i}=-\beta_{i}, \quad \gamma_{i}, \beta_{i} \in \mathbb{R} \end{aligned}$
Normal	\mathbb{R}	Pseu.-Sym.	Sym.	Pseu.-Sym.	Pseu.-Sym.
Sym.	\mathbb{R}	Pseu.-Sym.	Sym.	Pseu.-Sym.	Pseu.-Sym.
Sk.-Sym.	\mathbb{R}	Pseu.-Sk.-Sym.	Pseu.-Sk.-Sym.	Pseu.-Sk.-Sym.	Sk.-Sym.
Orth.	\mathbb{R}	Pseu.-Sym. Orth. Block-Diag.	Sym. Orth. Block-Diag.	Pseu.-Sym. Orth. Block-Diag.	Pseu.-Sym Orth. Block-Diag.
Normal	\mathbb{C}	x	Cplx.-Sym.	Cplx. Pseu.-Sym.	Cplx. Pseu.-Sym.
Herm.	\mathbb{C}	x	Cplx.-Sym.	Cplx. Pseu.-Sym.	Cplx. Pseu.-Sym.
Sk.-Herm.	\mathbb{C}	x	Cplx.-Sym.	Cplx. Pseu.-Sym.	Cplx. Pseu.-Sym.
Unitary	\mathbb{C}	\times Unit. Block-Diag.	Cplx.-Sym. Unit. Block-Diag.	Cplx. Pseu.-Sym. Unit. Block-Diag.	Cplx. Pseu.-Sym. Unit. Block-Diag.

Structure of the resulting tridiagonal matrix

Matrix Type	\mathbb{F}	Herm. $\gamma_{i}=\bar{\beta}_{i}, \quad \gamma_{i}, \beta_{i} \in \mathbb{C}$	Pseu.-Herm. $\gamma_{i}= \pm \bar{\beta}_{i}, \quad \gamma_{i}, \beta_{i} \in \mathbb{C}$	Skew-Herm. $\gamma_{i}=-\bar{\beta}_{i}, \quad \gamma_{i}, \beta_{i} \in \mathbb{C}$
Normal	\mathbb{R}	Sym.	Pseu.-Sym.	Pseu.-Sym.
Sym	\mathbb{R}	Sym.	Pseu.-Sym.	Pseu.-Sym.
Skew-Sym.	\mathbb{R}	Pseu.-Skew-Sym.	Pseu.-Skew-Sym.	Skew-Sym.
Orthogonal	\mathbb{R}	Sym. Orth. Block-Diag.	Pseu.-Sym Orth. Block-Diag.	Pseu.-Sym Orth. Block-Diag.
Normal	\mathbb{C}	X	\times	\times
Herm.	\mathbb{C}	Herm.	Pseu.-Herm.	Pseu.-Herm.
Skew-Herm.	\mathbb{C}	Pseu.-Skew-Herm.	Pseu.-Skew-Herm.	Skew-Herm.
Unitary	\mathbb{C}	Unitary Block-Diag.	Unitary Block-Diag.	Unitary Block-Diag.

Link with well-known methods

One can easily prove that:

- Applying symmetric reduction on symmetric matrix \rightarrow standard similarity.
- Applying skew-symmetric reduction on skew-symmetric matrix \rightarrow standard similarity.
- Applying hermitian reduction on hermitian matrix \rightarrow standard similarity.
- Applying skew-hermitian reduction on skew-hermitian matrix \rightarrow standard similarity.

Few extra properties

Suppose $U^{H} A V=T$, with T complex symmetric (i.e. $\gamma_{i}=\beta_{i}$):

- $U V^{H}, V U^{H}$ are complex symmetric.
- $U^{H} A^{i} V$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $V^{H} A^{i} U$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $U^{H}\left(A^{H}\right)^{i} V$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $V^{H}\left(A^{H}\right)^{i} U$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $U^{H} p\left(A, A^{H}, A^{-1}\right) V$ is complex symmetric (p a polynomial).
- $V^{H} p\left(A, A^{H}, A^{-1}\right) U$ is complex symmetric (p a polynomial).
- $U^{H} A U=\overline{V^{H} A^{H} V}$.
- $A=(U T \bar{U})\left(U^{\top} V^{H}\right)$ is a unitary complex symmetric factorization.

Outline

(1)
Unitary Equivalence relation

- Householder equivalence tridiagonalization
- Lanczos equivalence tridiagonalization
- Essential uniquenessThe normal case
- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties

3. Associated Krylov spaces

- Krylov subspaces
- Krylov matrices
- Examples
(4) Eigenvalues and singular values
(5) Conclusions

Krylov subspace approach

We switch back to the arbitrary matrix case:

A is not necessarily normal anymore!

- Let us define the following 'cyclical' Krylov sequences (k equals the number of terms):

$$
\begin{aligned}
C_{k}(A, \mathbf{x}) & =\operatorname{spa}\left\{\mathbf{x}, \quad A \mathbf{y}, \quad A A^{H} \mathbf{x}, \quad A A^{H} A \mathbf{y}, \quad\left(A A^{H}\right)^{2} \mathbf{x}, \ldots\right\} \\
C_{k}\left(A^{H}, \mathbf{y}\right) & =\operatorname{span}\left\{\mathbf{y}, \quad A^{H} \mathbf{x}, \quad A^{H} A \mathbf{y}, \quad A^{H} A A^{H} \mathbf{x}, \quad\left(A A^{H}\right)^{2} \mathbf{y}, \ldots\right\} .
\end{aligned}
$$

- NOTE: this is NOT the unsymmetric Lanczos process $\left(W^{H} U=l\right)$!

$$
\begin{aligned}
\mathcal{K}_{k}\left(A, \mathbf{u}_{1}\right) & =\operatorname{span}\left\{\mathbf{u}_{1}, A \mathbf{u}_{1}, A^{2} \mathbf{u}_{1}, A^{3} \mathbf{u}_{1}, \ldots\right\} \\
\mathcal{K}_{k}\left(A^{H}, \mathbf{w}_{1}\right) & =\operatorname{span}\left\{\mathbf{w}_{1}, A^{H} \mathbf{w}_{1},\left(A^{H}\right)^{2} \mathbf{w}_{1},\left(A^{H}\right)^{3} \mathbf{w}_{1}, \ldots\right\} .
\end{aligned}
$$

Krylov subspace approach

- Considering the following Krylov space

$$
\begin{aligned}
& \mathcal{K}\left(\left[\begin{array}{cc}
0 & A \\
A^{H} & 0
\end{array}\right],\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]\right) \\
= & \operatorname{span}\left\{\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right],\left[\begin{array}{c}
A \mathbf{y} \\
A^{H} \mathbf{x}
\end{array}\right],\left[\begin{array}{c}
A A^{H} \mathbf{x} \\
A^{H} A \mathbf{y}
\end{array}\right],\left[\begin{array}{c}
A A^{H} A \mathbf{y} \\
A^{H} A A^{H} \mathbf{x}
\end{array}\right], \ldots\right\}
\end{aligned}
$$

- Similar results as for the cyclical Krylov approach can be obtained when putting also the vectors \mathbf{x} and \mathbf{y} in a matrix and apply block Lanczos.
- This leads to a sort of block product Krylov subspace process. [Kressner, Watkins, ...]

Krylov subspace approach

- Let us define the following 'cyclical' Krylov sequences (k equals the number of terms):

$$
\begin{aligned}
C_{k}(A, \mathbf{x}) & =\operatorname{span}\left\{\mathbf{x}, A \mathbf{y}, A A^{H} \mathbf{x}, A A^{H} A \mathbf{y},\left(A A^{H}\right)^{2} \mathbf{x}, \ldots\right\} \\
C_{k}\left(A^{H}, \mathbf{y}\right) & =\operatorname{span}\left\{\mathbf{y}, A^{H} \mathbf{x}, A^{H} A \mathbf{y}, A^{H} A A^{H} \mathbf{x},\left(A A^{H}\right)^{2} \mathbf{y}, \ldots\right\}
\end{aligned}
$$

- We have

$$
\begin{aligned}
& A C_{k}\left(A^{H}, \mathbf{y}\right) \quad C_{k+1}(A, \mathbf{x}) \\
& A^{H} C_{k}(A, \mathbf{x}) \quad \subset C_{k+1}(A, \mathbf{y})
\end{aligned}
$$

- Consider two orthogonal bases $(\forall k)$:

$$
\begin{array}{rll}
\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{k}\right\} & \text { spanning } & \mathcal{C}_{k}(A, \mathbf{x}) \\
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{k}\right\} & \text { spanning } & \mathcal{C}_{k}\left(A^{H}, \mathbf{y}\right) .
\end{array}
$$

Orthogonal relations

Since

$$
\begin{array}{rll}
\mathbf{v}_{k} \in C_{k+1}\left(A^{H}, \mathbf{y}\right) \backslash C_{k}\left(A^{H}, \mathbf{y}\right) & \text { and } & \left\langle A \mathbf{v}_{k}, \mathbf{u}_{i}\right\rangle=\left\langle\mathbf{v}_{k}, A^{H} \mathbf{u}_{i}\right\rangle, \\
\mathbf{u}_{k} \in C_{k+1}(A, \mathbf{x}) \backslash C_{k}(A, \mathbf{x}) & \text { and } & \left\langle A^{H} \mathbf{u}_{k}, \mathbf{v}_{i}\right\rangle=\left\langle\mathbf{u}_{k}, A \mathbf{v}_{i}\right\rangle .
\end{array}
$$

we have (for $1 \leq i \leq k-2$),

$$
A \mathbf{v}_{k} \perp \mathbf{u}_{i} \text { and } A \mathbf{u}_{k} \perp \mathbf{v}_{i} .
$$

Hence, we get (assume β_{i} and γ_{i} different from zero):

$$
\begin{aligned}
A \mathbf{v}_{i} & =\gamma_{i-1} \mathbf{u}_{i-1}+\alpha_{i} \mathbf{u}_{i}+\beta_{i+1} \mathbf{u}_{i+1}, \\
A^{H} \mathbf{u}_{i} & =\bar{\beta}_{i-1} \mathbf{v}_{i-1}+\bar{\alpha}_{i} \mathbf{v}_{i}+\bar{\gamma}_{i+1} \mathbf{v}_{i+1},
\end{aligned}
$$

where $\beta_{i+1}=\left\langle\mathbf{u}_{i+1}, A \mathbf{v}_{i}\right\rangle, \alpha_{i}=\left\langle\mathbf{u}_{i}, A \mathbf{v}_{i}\right\rangle$ and $\gamma_{i-1}=\left\langle\mathbf{u}_{i-1}, A \mathbf{v}_{i}\right\rangle$.
This leads to

$$
\begin{aligned}
A V_{k} & =U_{k} T_{k}+\beta_{k+1} \mathbf{u}_{k+1} \mathbf{e}_{k}^{T}, \\
A^{H} U_{k} & =V_{k} T_{k}^{H}+\bar{\gamma}_{k+1} \mathbf{v}_{k+1} \mathbf{e}_{k}^{T} .
\end{aligned}
$$

Cyclical Krylov matrices

Consider cyclical krylov matrices:

$$
\begin{aligned}
C_{k}(A, \mathbf{x}) & =\left[\mathbf{x}, A \mathbf{y}, A A^{H} \mathbf{x}, A A^{H} A \mathbf{y},\left(A A^{H}\right)^{2} \mathbf{x}, \ldots\right] \\
C_{k}\left(A^{H}, \mathbf{y}\right) & =\left[\mathbf{y}, A^{H} \mathbf{x}, A^{H} A \mathbf{y}, A^{H} A A^{H} \mathbf{x},\left(A A^{H}\right)^{2} \mathbf{y}, \ldots\right] .
\end{aligned}
$$

To prove the main theorem a small lemma is needed.

Lemma

Suppose $A V=U \hat{A}$ and $A^{H} U=V \hat{A}^{H}$ then:

$$
\begin{aligned}
U C_{k}(\hat{A}, \mathbf{x}) & =C_{k}(A, U \mathbf{x}), \\
V C_{k}\left(\hat{A}^{H}, \mathbf{y}\right) & =C_{k}(A, V \mathbf{y}) .
\end{aligned}
$$

Theorem

For U and V unitary, $U^{H} A V=T$ is tridiagonal if and only if the columns of U and V define an orthonormal basis for a specific cyclical Krylov subspace.

- The \Leftarrow is proved before.
- The $\Rightarrow: T$ is tridiagonal, hence we have (R, \hat{R} upper triangular):

$$
C_{k}\left(T, \mathbf{e}_{1}\right)=R \text { and } C_{k}\left(T^{H}, \mathbf{e}_{1}\right)=\hat{R} ;
$$

Since $A V=U T$ and $A^{H} U=V T^{H}$ we can apply the lemma:

$$
\begin{aligned}
U R=U C_{k}\left(T, \mathbf{e}_{1}\right) & =C_{k}\left(A, \mathbf{u}_{1}\right) \\
V \hat{R}=V C_{k}\left(T^{H}, \mathbf{e}_{1}\right) & =C_{k}\left(A^{H}, \mathbf{v}_{1}\right)
\end{aligned}
$$

On the left two $Q R$-factorizations are shown, hence U and V define an orthonormal basis for $\mathcal{C}_{k}\left(A, \mathbf{u}_{1}\right)$ and $\mathcal{C}_{k}\left(A^{H}, \mathbf{v}_{1}\right)$ respectively.

(Skew-)Hermitian matrices

- When $A=A^{H}$ is Hermitian, we get:

$$
C_{k}\left(A^{H}, \mathbf{x}\right)=C_{k}(A, \mathbf{x})=\operatorname{span}\left\{\mathbf{x}, A \mathbf{x}, A^{2} \mathbf{x}, A^{3} \mathbf{x}, \ldots, A^{k-1} \mathbf{x}\right\} .
$$

this is that standard Krylov subspace $\mathscr{K}_{k}(A, \mathbf{x})$.

- Hence we have $U^{H} A U=T$ with U unitary, T hermitian.
- When $-A=A^{H}$ is skew-Hermitian we get:

$$
\begin{aligned}
C_{k}(A, \mathbf{x}) & =\operatorname{span}\left\{\mathbf{x}, A \mathbf{x},-A^{2} \mathbf{x},-A^{3} \mathbf{x}, A^{4} \mathbf{x}, \ldots\right\} \\
C_{k}\left(A^{H}, \mathbf{x}\right) & =\operatorname{span}\left\{\mathbf{x},-A \mathbf{x},-A^{2} \mathbf{x}, A^{3} \mathbf{x}, A^{4} \mathbf{x}, \ldots\right\} \\
\mathcal{K}_{k}(A, \mathbf{x}) & =\operatorname{span}\left\{\mathbf{x}, A \mathbf{x}, A^{2} \mathbf{x}, A^{3} \mathbf{x}, A^{4}, \mathbf{x}, \ldots,\right\}
\end{aligned}
$$

- Hence we have $U^{H} A U=T$ with U unitary, T skew-hermitian.

Unitary matrices

- A is unitary $A A^{H}=A^{H} A=I$.
- Let us distinguish between two cases:
- Starting vector is an eigenvector \mathbf{v}.

$$
\begin{aligned}
\mathcal{C}_{2}(A, \mathbf{v}) & =\mathcal{C}_{1}(A, \mathbf{v}) \\
\mathcal{C}_{2}\left(A^{H}, \mathbf{v}\right) & =\mathcal{C}_{1}\left(A^{H}, \mathbf{v}\right)
\end{aligned}
$$

as a result we have a 1×1 block on the diagonal and a restart is required.

- If \mathbf{v} is not an eigenvector:

$$
\begin{aligned}
\mathcal{C}_{3}(A, \mathbf{v}) & =\operatorname{span}\left\{\mathbf{v}, A \mathbf{v}, A A^{H} \mathbf{v}\right\} \\
& =\operatorname{span}\{\mathbf{v}, A \mathbf{v}, \mathbf{v}\} \\
& =\operatorname{span}\{\mathbf{v}, A \mathbf{v}\}=\mathcal{C}_{2}(A, \mathbf{v})
\end{aligned}
$$

and also

$$
\mathcal{C}_{3}\left(A^{H}, \mathbf{v}\right)=\mathcal{C}_{2}\left(A^{H}, \mathbf{v}\right),
$$

as a result we have a 2×2 block on the diagonal and a restart is required.

- So generically always a block tridiagonal with 2×2 blocks on the diagonal. (Eventually a trailing 1×1 block when n is odd.)

Outline

(1)

Unitary Equivalence relation

- Householder equivalence tridiagonalization
- Lanczos equivalence tridiagonalization
- Essential uniqueness
(2. The normal case
- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties
(3) Associated Krylov spaces
- Krylov subspaces
- Krylov matrices
- Examples

4. Eigenvalues and singular values
(5) Conclusions

General remarks

- Intimitely related:

$$
\begin{array}{rlr}
A & =W \Delta W^{H} \quad \text { Eigenvalue decomposition, } \\
A & =U \Sigma V^{H} \quad \text { Singular value decomposition, } \\
\Sigma & =|\Delta|=\Delta D \quad D \text { unitary diagonal. } \\
V^{H} U & =D . &
\end{array}
$$

- Given the eigenvalues Δ :
\rightarrow we have the singular values $\Sigma=|\Delta|$.
- Given the eigenvalue decomposition $W \Delta W^{H}$:
\rightarrow we have the SVD: $W|\Delta|\left(\bar{D} W^{H}\right)=W \Sigma\left(\bar{D} W^{H}\right)$.
- Given the singular values Σ :
\rightarrow NOT possible to compute eigenvalues.
- Given the singular value decomposition $U \Sigma V^{H}$:
\rightarrow we have the eigenvalue decomposition since we have $V^{H} U=D$ and $\Delta=\Sigma \bar{D}$.

For the moment no efficient technique for computing the eigenvalues, exploiting the normal matrix structure exists.

SVD-method for normal matrices

Computing the full SVD.

- Reduction to bidiagonal form B :
\rightarrow Compute and store $2 n-3$ Householder transformations.
- Compute SVD of $B=U \Sigma V^{H}$:
\rightarrow combine all performed chasing transformations,
\rightarrow store the two unitary matrices U and V.

SVD-method for normal matrices

Computing the full SVD.

- Reduction to bidiagonal form B :
\rightarrow Compute and store $2 n-3$ Householder transformations.
- Compute SVD of $B=U \Sigma V^{H}$:
\rightarrow combine all performed chasing transformations,
\rightarrow store the two unitary matrices U and V.
- Reduction to complex tridiagonal form T :
\rightarrow Compute and store $2 n-4$ Householder transformations.
- Compute SVD of T :
- T is complex symmetric, hence SVD \rightarrow Takagi factorization.

$$
T=U \Sigma V^{H}=Q \Sigma Q^{T},
$$

with Q unitary.

- Based on the $Q R$-iteration on $T T^{H}$.
- Faster, less memory than the standard SVD, when Q is desired.
- See [Gragg, Bunse-Gerstner, JCAM, 1988]

Outline

(1) Unitary Equivalence relation

- Householder equivalence tridiagonalization
- Lanczos equivalence tridiagonalization
- Essential uniqueness
(2) The normal case
- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties
(3) Associated Krylov spaces
- Krylov subspaces
- Krylov matrices
- Examples
(4) Eigenvalues and singular values
(5) Conclusions

Conclusions

- Tridiagonal matrices unitary equivalent with normal matrices were studied.
- A generalization of well-known methods for specific normal matrices.
- Specific reduction types;
- Krylov relations.
- Alternative computation of the SVD of normal matrices, starting point for further research.

Important references

- L. Elsner;
- Kh. D. Ikramov;
- H. Fassbender;
- R. Grone \& Johnsson \& E. M. Sa;
- R. Horn \& C. Johnsson;
- C. Mehl.

