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Householder equivalence tridiagonalization
Given A ∈ Cn×n, Uk and Vk Householder transformations:

UH
k x = ω‖x‖e1, |ω| = 1, and V H

k y = σ‖y‖e1, |σ| = 1.

Algorithm (Householder equivalence tridiagonalization)

The algorithm computes UHAV = T , with T tridiagonal, U and V
unitary.

For k=1:n-2
Compute the Householder reflector Uk = I−αvvH,
based on A(k +1 : n,k)

A(k +1 : n,k : n) = UH
k A(k +1 : n,k : n)

Compute the Householder reflector Vk = I−βwwH,
based on A(k ,k +1 : n)H

A(k : n,k +1 : n) = A(k : n,k +1 : n)Vk

end
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Lanczos equivalence tridiagonalization
Suppose UHAV = T , having diagonal elements αi , subdiagonals βi
and superdiagonals γi and U = [u1, . . . ,un] and V = [v1, . . . ,vn].
Based on

AV = UT and AHU = VT H

we get

Avk = γk−1uk−1 +αk uk +βk uk+1 (1)
AHuk = βk−1vk−1 +αk vk + γk vk+1, (2)

Rewriting (1) and (2) gives us (with αk = uH
k Avk = vH

k AHuk ):

rk+1 = Avk − γk−1uk−1−αk uk ,

sk+1 = AHuk −βk−1vk−1−αk vk .

Hence βk = ‖rk+1‖2, uk+1 = rk+1/βk and γk = ‖sk+1‖2,
vk+1 = sk+1/γk .
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Lanczos equivalence Tridiagonalization

Algorithm (Lanczos equivalence tridiagonalization)

The algorithm computes “theoretically” UHAV = T , with T tridiagonal,
U and V unitary.

Initialize u1 and v1. (E.g., u1 = e1 = v1.)

for k = 1 : n−1
αk = uH

k Avk

r = Avk − γk−1uk−1−αk uk

s = AHuk −βk−1vk−1−αk vk

βk = ω‖r‖2, γk = σ‖s‖2 (ω,σ are free, |ω| = |σ| = 1)
uk+1 = r/βk , vk+1 = s/γk

end
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Essential uniqueness: Case 1

Case 1: sub- and superdiagonal elements different from zero.

Theorem

A ∈ Cn×n, U,V unitary, T ,S tridiagonal:

T = UHAV , S = ÛHAV̂ .

sub- and superdiagonal elements different from zero.

When
Ue1 = ω̂Ûe1, Ve1 = ωV̂e2, |ω1| = |ω̂1| = 1.

then unitary diagonal D and D̂ exist, such that

VD = V̂ , UD̂ = Û and |T | = |S|.
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Essential uniqueness: Case 2

Case 2: sub- and superdiagonal elements can be zero.

Theorem

Same assumptions as before;

K = min{i |si+1,i = 0}, and L = min{i |si ,i+1 = 0}.

Then we have three different cases:
K < L.

Columns 1 up to K of U and Û are essentially unique.
Columns 1 up to K +1 of V and V̂ are essentially unique.
For 1≤ k ≤ K and 1≤ l ≤ K +1: |tk ,l | = |sk ,l |.

L < K . Similar.

K = L. Similar.
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Essential uniqueness: Case 2

Below the resulting T is depicted:
The ! denote the essentially unique parts.

K < L and K = 3 K > L and L = 3 K = L = 3
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Main theorem
Theorem

Given a normal A ∈ Cn×n.

For U,V, with Ue1 = ωVe1 (|ω| = 1) such that

UHAV = T

with T tridiagonal having

subdiagonal elements βi ,

superdiagonal elements γi .

We have (assume γi and βi different from 0):

|βi | = |γi |, ∀i = 1, . . . ,n−1.

In case a γi and/or βi is zero, a sort of restart or equivalently and extra
relation needs to be put on U and V .
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Comments on the proof
By induction on k (three steps):

1 |γk | = |βk |.

2 A recurrence in bivariate polynomials is proven for AHuk+1 and Avk+1:

AHuk+1 =
1

β1:k

(
AH β1:k−1

γ1:k−1
pk (AH ,A)−βk−1γk−1pk−1(A,AH)−αk pk (A,AH)

)
v1

=
1

β1:k
pk+1(A,AH)v1

and a similar relation

Avk+1 =
1

γ1:k
pk+1(AH ,A)v1,

β0 = γ0 = 0,p0 = 0 and p1(x ,y) = y .

3 Based on these results we get ‖Avk+1‖2 = ‖AHuk+1‖2.

This has also consequences on the implementation.
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Scalar product spaces
For A normal we have a factorization

UHAV = T = SD,

with S complex symmetric and D unitary diagonal.

Consider the bilinear form (Ω is a weight matrix):

〈x,y〉Ω = xT Ωy.

The adjoint of A w.r.t. 〈·, ·〉Ω is A!:

〈Ax,y〉Ω = 〈x,A!y〉Ω, for x,y ∈ Cn.

A closed formula:
A! = Ω−1AT Ω,

It is easily checked that for Ω = D:

T ! = D−1T T D,

= D−1(SD)T D,

= T .

Hence, T is self-adjoint w.r.t. 〈·, ·〉D .
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Some corollaries

Compact formulation of the main theorem.

Theorem

For A ∈ Cn×n normal and UHAV = T , satisfying the conditions above
we get: T is self-adjoint w.r.t. 〈·, ·〉Ω, with Ω a unitary diagonal matrix.

We have an even stronger result.

Theorem
For A ∈ Cn×n normal and Ω a unitary diagonal.
There exists U and V ... such that UHAV = T is tridiagonal and
T is self-adjoint w.r.t. 〈·, ·〉Ω.

14 / 34
On tridiagonal matrices unitary equivalent, with normal matrices



Unitary Equivalence relation The normal case Associated Krylov spaces Eigenvalues and singular values Conclusions

Some corollaries

Compact formulation of the main theorem.

Theorem

For A ∈ Cn×n normal and UHAV = T , satisfying the conditions above
we get: T is self-adjoint w.r.t. 〈·, ·〉Ω, with Ω a unitary diagonal matrix.

We have an even stronger result.

Theorem
For A ∈ Cn×n normal and Ω a unitary diagonal.
There exists U and V ... such that UHAV = T is tridiagonal and
T is self-adjoint w.r.t. 〈·, ·〉Ω.

14 / 34
On tridiagonal matrices unitary equivalent, with normal matrices



Unitary Equivalence relation The normal case Associated Krylov spaces Eigenvalues and singular values Conclusions

Specific reductions
Construct the unitary matrices U and V such that UHAV = T .

T is tridiagonal having superdiagonals γi and subdiagonals βi :
1 γi = βi Symmetric reduction.
2 γi = ±βi Pseudo-Symmetric reduction.
3 γi =−βi Skew-Symmetric reduction.
4 γi = βi Hermitian reduction.
5 γi = ±βi Pseudo-Hermitian reduction.
6 γi =−βi Skew-Hermitian reduction.

Examples of the nomenclature:
(all related to certain 〈·, ·〉Ω [2×Mackey + Tisseur, SIMAX, 2005])

1 Signature matrix: D has ±1 on the diagonal.
2 Pseudo-symmetric: A = SD, with S symmetric, D signature matrix.
3 Complex pseudo skew-symmetric: A = SD, S complex skew-symmetric,

D a signature matrix.
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Structure of the resulting tridiagonal matrix
Left: specific normal matrices.
Top: type of reduction performed, with relation between γi and βi .

Matrix F Arb. (Ω) Sym. (Ω = I) Pseu.-Sym. (Ω = D) Sk.-Sym. (Ω = Σ)
|γi | = |βi | γi = βi , γi ,βi ∈ R γi = ±βi , γi ,βi ∈ R γi =−βi , γi ,βi ∈ R

Normal R Pseu.-Sym. Sym. Pseu.-Sym. Pseu.-Sym.

Sym. R Pseu.-Sym. Sym. Pseu.-Sym. Pseu.-Sym.

Sk.-Sym. R Pseu.-Sk.-Sym. Pseu.-Sk.-Sym. Pseu.-Sk.-Sym. Sk.-Sym.

Orth. R Pseu.-Sym. Sym. Pseu.-Sym. Pseu.-Sym
Orth. Orth. Orth. Orth.

Block-Diag. Block-Diag. Block-Diag. Block-Diag.

Normal C ! Cplx.-Sym. Cplx. Pseu.-Sym. Cplx. Pseu.-Sym.

Herm. C ! Cplx.-Sym. Cplx. Pseu.-Sym. Cplx. Pseu.-Sym.

Sk.-Herm. C ! Cplx.-Sym. Cplx. Pseu.-Sym. Cplx. Pseu.-Sym.

Unitary C ! Cplx.-Sym. Cplx. Pseu.-Sym. Cplx. Pseu.-Sym.
Unit. Unit. Unit. Unit.

Block-Diag. Block-Diag. Block-Diag. Block-Diag.
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Structure of the resulting tridiagonal matrix

Matrix Type F Herm. Pseu.-Herm. Skew-Herm.
γi = βi , γi ,βi ∈ C γi = ±βi , γi ,βi ∈ C γi =−βi , γi ,βi ∈ C

Normal R Sym. Pseu.-Sym. Pseu.-Sym.

Sym R Sym. Pseu.-Sym. Pseu.-Sym.

Skew-Sym. R Pseu.-Skew-Sym. Pseu.-Skew-Sym. Skew-Sym.

Orthogonal R Sym. Pseu.-Sym Pseu.-Sym
Orth. Block-Diag. Orth. Block-Diag. Orth. Block-Diag.

Normal C ! ! !

Herm. C Herm. Pseu.-Herm. Pseu.-Herm.

Skew-Herm. C Pseu.-Skew-Herm. Pseu.-Skew-Herm. Skew-Herm.

Unitary C Unitary Unitary Unitary
Block-Diag. Block-Diag. Block-Diag.
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Link with well-known methods

One can easily prove that:
Applying symmetric reduction on symmetric matrix
→ standard similarity.

Applying skew-symmetric reduction on skew-symmetric matrix
→ standard similarity.

Applying hermitian reduction on hermitian matrix
→ standard similarity.

Applying skew-hermitian reduction on skew-hermitian matrix
→ standard similarity.

18 / 34
On tridiagonal matrices unitary equivalent, with normal matrices



Unitary Equivalence relation The normal case Associated Krylov spaces Eigenvalues and singular values Conclusions

Few extra properties

Suppose UHAV = T , with T complex symmetric (i.e. γi = βi ):

UV H ,VUH are complex symmetric.

UHAiV (with i ∈ Z) is complex symmetric.

V HAiU (with i ∈ Z) is complex symmetric.

UH(AH)iV (with i ∈ Z) is complex symmetric.

V H(AH)iU (with i ∈ Z) is complex symmetric.

UHp(A,AH ,A−1)V is complex symmetric (p a polynomial).

V Hp(A,AH ,A−1)U is complex symmetric (p a polynomial).

UHAU = V HAHV .

A = (UTU)(UT V H) is a unitary complex symmetric factorization.

19 / 34
On tridiagonal matrices unitary equivalent, with normal matrices



Unitary Equivalence relation The normal case Associated Krylov spaces Eigenvalues and singular values Conclusions

Outline
1 Unitary Equivalence relation

Householder equivalence tridiagonalization
Lanczos equivalence tridiagonalization
Essential uniqueness

2 The normal case
Main theorem
Scalar product spaces
Specific reductions
Few extra properties

3 Associated Krylov spaces
Krylov subspaces
Krylov matrices
Examples

4 Eigenvalues and singular values
5 Conclusions

20 / 34
On tridiagonal matrices unitary equivalent, with normal matrices



Unitary Equivalence relation The normal case Associated Krylov spaces Eigenvalues and singular values Conclusions

Krylov subspace approach
We switch back to the arbitrary matrix case:

A is not necessarily normal anymore!

Let us define the following ‘cyclical’ Krylov sequences
(k equals the number of terms):

Ck (A,x) = span{x, Ay, AAHx, AAHAy, (AAH)2x, . . .}

Ck (AH ,y) = span{y, AHx, AHAy, AHAAHx, (AAH)2y, . . .}.

NOTE: this is NOT the unsymmetric Lanczos process (W HU = I)!

Kk (A,u1) = span{u1,Au1,A2u1,A3u1, . . .}
Kk (AH ,w1) = span{w1,AHw1,(AH)2w1,(AH)3w1, . . .}.

21 / 34
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Krylov subspace approach

Considering the following Krylov space

K
([

0 A
AH 0

]
,

[
x
y

])

= span
{[

x
y

]
,

[
Ay

AHx

]
,

[
AAHx
AHAy

]
,

[
AAHAy

AHAAHx

]
, . . .

}

Similar results as for the cyclical Krylov approach can be obtained when
putting also the vectors x and y in a matrix and apply block Lanczos.

This leads to a sort of block product Krylov subspace process.
[Kressner, Watkins, ...]
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Krylov subspace approach

Let us define the following ‘cyclical’ Krylov sequences
(k equals the number of terms):

Ck (A,x) = span{x,Ay,AAHx,AAHAy,(AAH)2x, . . .}
Ck (AH ,y) = span{y,AHx,AHAy,AHAAHx,(AAH)2y, . . .}.

We have

ACk (AH ,y) ⊂ Ck+1(A,x),

AHCk (A,x) ⊂ Ck+1(A,y).

Consider two orthogonal bases (∀k ):

{u1,u2,u3, . . . ,uk} spanning Ck (A,x),

{v1,v2,v3, . . . ,vk} spanning Ck (AH ,y).
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Orthogonal relations
Since

vk ∈ Ck+1(AH ,y)\Ck (AH ,y) and 〈Avk ,ui〉= 〈vk ,AHui〉,
uk ∈ Ck+1(A,x)\Ck (A,x) and 〈AHuk ,vi〉= 〈uk ,Avi〉.

we have (for 1≤ i ≤ k −2),

Avk⊥ui and Auk⊥vi .

Hence, we get (assume βi and γi different from zero):

Avi = γi−1ui−1 +αiui +βi+1ui+1,

AHui = βi−1vi−1 +αivi + γi+1vi+1,

where βi+1 = 〈ui+1,Avi〉,αi = 〈ui ,Avi〉 and γi−1 = 〈ui−1,Avi〉.
This leads to

AVk = Uk Tk +βk+1uk+1eT
k ,

AHUk = Vk T H
k + γk+1vk+1eT

k .
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Cyclical Krylov matrices

Consider cyclical krylov matrices:

Ck (A,x) =
[
x,Ay,AAHx,AAHAy,(AAH)2x, . . .

]

Ck (AH ,y) =
[
y,AHx,AHAy,AHAAHx,(AAH)2y, . . .

]
.

To prove the main theorem a small lemma is needed.

Lemma

Suppose AV = UÂ and AHU = VÂH then:

UCk (Â,x) = Ck (A,Ux),

VCk (ÂH ,y) = Ck (A,Vy).

25 / 34
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Theorem

For U and V unitary, UHAV = T is tridiagonal if and only if the
columns of U and V define an orthonormal basis for a specific
cyclical Krylov subspace.

The ⇐ is proved before.

The ⇒: T is tridiagonal, hence we have (R, R̂ upper triangular):

Ck (T ,e1) = R and Ck (T H ,e1) = R̂;

Since AV = UT and AHU = VT H we can apply the lemma:

UR = UCk (T ,e1) = Ck (A,u1),

VR̂ = VCk (T H ,e1) = Ck (AH ,v1).

On the left two QR-factorizations are shown, hence U and V define an
orthonormal basis for Ck (A,u1) and Ck (AH ,v1) respectively.

26 / 34
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(Skew-)Hermitian matrices

When A = AH is Hermitian, we get:

Ck (AH ,x) = Ck (A,x) = span{x,Ax,A2x,A3x, . . . ,Ak−1x}.

this is that standard Krylov subspace Kk (A,x).

Hence we have UHAU = T with U unitary, T hermitian.

When −A = AH is skew-Hermitian we get:

Ck (A,x) = span{x,Ax,−A2x,−A3x,A4x, . . .},
Ck (AH ,x) = span{x,−Ax,−A2x,A3x,A4x, . . .},

Kk (A,x) = span{x,Ax,A2x,A3x,A4,x, . . . ,}.

Hence we have UHAU = T with U unitary, T skew-hermitian.

27 / 34
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Unitary matrices

A is unitary AAH = AHA = I.
Let us distinguish between two cases:

Starting vector is an eigenvector v.

C2(A,v) = C1(A,v)

C2(AH ,v) = C1(AH ,v)

as a result we have a 1×1 block on the diagonal and a restart is required.
If v is not an eigenvector:

C3(A,v) = span{v,Av,AAHv}
= span{v,Av, Iv}
= span{v,Av} = C2(A,v).

and also
C3(AH ,v) = C2(AH ,v),

as a result we have a 2×2 block on the diagonal and a restart is required.

So generically always a block tridiagonal with 2×2 blocks on the
diagonal. (Eventually a trailing 1×1 block when n is odd.)
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General remarks
Intimitely related:

A = W∆W H Eigenvalue decomposition,
A = UΣV H Singular value decomposition,
Σ = |∆| = ∆D D unitary diagonal.

V HU = D.

Given the eigenvalues ∆:
→ we have the singular values Σ = |∆|.
Given the eigenvalue decomposition W∆W H :
→ we have the SVD: W |∆| (DW H) = W Σ(DW H) .
Given the singular values Σ:
→ NOT possible to compute eigenvalues.
Given the singular value decomposition UΣV H :
→ we have the eigenvalue decomposition since we have
V HU = D and ∆ = ΣD.

For the moment no efficient technique for computing the eigenvalues,
exploiting the normal matrix structure exists.
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SVD-method for normal matrices
Computing the full SVD.

Reduction to bidiagonal form B:
→ Compute and store 2n−3 Householder transformations.

Compute SVD of B = UΣV H :
→ combine all performed chasing transformations,
→ store the two unitary matrices U and V .

Reduction to complex tridiagonal form T :
→ Compute and store 2n−4 Householder transformations.
Compute SVD of T :

T is complex symmetric, hence SVD → Takagi factorization.

T = UΣV H = QΣQT ,

with Q unitary.
Based on the QR-iteration on TT H .
Faster, less memory than the standard SVD, when Q is desired.
See [Gragg, Bunse-Gerstner, JCAM, 1988]
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Conclusions

Tridiagonal matrices unitary equivalent with normal matrices were
studied.

A generalization of well-known methods for specific normal matrices.
Specific reduction types;
Krylov relations.

Alternative computation of the SVD of normal matrices, starting point for
further research.
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