On tridiagonal matrices unitary equivalent with normal matrices

Raf Vandebril

Departement of Computer Science K.U.Leuven

Cortona 2008

Conclusions

Contents

- Unitary Equivalence relation
 - Householder equivalence tridiagonalization
 - Lanczos equivalence tridiagonalization
 - Essential uniqueness

The normal case

- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties

Associated Krylov spaces

- Krylov subspaces
- Krylov matrices
- Examples
- 4 Eigenvalues and singular values
 - Conclusions

Conclusions

Outline

- Unitary Equivalence relation
 - Householder equivalence tridiagonalization
 - Lanczos equivalence tridiagonalization
 - Essential uniqueness

2) The normal case

- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties

3 Associated Krylov spaces

- Krylov subspaces
- Krylov matrices
- Examples
- Eigenvalues and singular values
- 5 Conclusions

Householder equivalence tridiagonalization

Given $A \in \mathbb{C}^{n \times n}$, U_k and V_k Householder transformations:

 $U_k^H \mathbf{x} = \boldsymbol{\omega} \| \mathbf{x} \| \mathbf{e}_1, |\boldsymbol{\omega}| = 1, \quad \text{and} \quad V_k^H \mathbf{y} = \boldsymbol{\sigma} \| \mathbf{y} \| \mathbf{e}_1, |\boldsymbol{\sigma}| = 1.$

Algorithm (Householder equivalence tridiagonalization)

The algorithm computes $U^H A V = T$, with T tridiagonal, U and V unitary.

For k=1:n-2Compute the Householder reflector $U_k = I - \alpha \mathbf{v} \mathbf{v}^H$, based on A(k+1:n,k) $A(k+1:n,k:n) = U_k^H A(k+1:n,k:n)$ Compute the Householder reflector $V_k = I - \beta \mathbf{w} \mathbf{w}^H$, based on $A(k, k+1:n)^H$ $A(k:n, k+1:n) = A(k:n, k+1:n) V_k$

end

Lanczos equivalence tridiagonalization

Suppose $U^H A V = T$, having diagonal elements α_i , subdiagonals β_i and superdiagonals γ_i and $U = [\mathbf{u}_1, \dots, \mathbf{u}_n]$ and $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$. Based on

$$AV = UT$$
 and $A^H U = VT^H$

we get

$$A\mathbf{v}_{k} = \gamma_{k-1}\mathbf{u}_{k-1} + \alpha_{k}\mathbf{u}_{k} + \beta_{k}\mathbf{u}_{k+1}$$
(1)

$$A^{H}\mathbf{u}_{k} = \overline{\beta}_{k-1}\mathbf{v}_{k-1} + \overline{\alpha}_{k}\mathbf{v}_{k} + \overline{\gamma}_{k}\mathbf{v}_{k+1}, \qquad (2)$$

Rewriting (1) and (2) gives us (with $\alpha_k = \mathbf{u}_k^H A \mathbf{v}_k = \overline{\mathbf{v}_k^H A^H \mathbf{u}_k}$):

$$\begin{aligned} \mathbf{r}_{k+1} &= \mathbf{A}\mathbf{v}_k - \gamma_{k-1}\mathbf{u}_{k-1} - \alpha_k\mathbf{u}_k, \\ \mathbf{s}_{k+1} &= \mathbf{A}^H\mathbf{u}_k - \overline{\beta}_{k-1}\mathbf{v}_{k-1} - \overline{\alpha}_k\mathbf{v}_k. \end{aligned}$$

Hence $\beta_k = \|\mathbf{r}_{k+1}\|_2$, $\mathbf{u}_{k+1} = \mathbf{r}_{k+1}/\beta_k$ and $\gamma_k = \|\mathbf{s}_{k+1}\|_2$, $\mathbf{v}_{k+1} = \mathbf{s}_{k+1}/\gamma_k$.

Lanczos equivalence Tridiagonalization

Algorithm (Lanczos equivalence tridiagonalization)

The algorithm computes "theoretically" $U^{H}AV = T$, with T tridiagonal, U and V unitary.

Initialize \mathbf{u}_1 and \mathbf{v}_1 . (E.g., $\mathbf{u}_1 = \mathbf{e}_1 = \mathbf{v}_1$.)

for
$$k = 1 : n - 1$$

 $\alpha_k = \mathbf{u}_k^H A \mathbf{v}_k$
 $\mathbf{r} = A \mathbf{v}_k - \gamma_{k-1} \mathbf{u}_{k-1} - \alpha_k \mathbf{u}_k$
 $\mathbf{s} = A^H \mathbf{u}_k - \overline{\beta}_{k-1} \mathbf{v}_{k-1} - \overline{\alpha}_k \mathbf{v}_k$
 $\beta_k = \omega \|\mathbf{r}\|_2, \quad \gamma_k = \sigma \|\mathbf{s}\|_2 \quad (\omega, \sigma \text{ are free, } |\omega| = |\sigma| = 1)$
 $\mathbf{u}_{k+1} = \mathbf{r}/\beta_k, \quad \mathbf{v}_{k+1} = \mathbf{s}/\gamma_k$
end

Essential uniqueness: Case 1

Case 1: sub- and superdiagonal elements different from zero.

Theorem

 $A \in \mathbb{C}^{n \times n}$, U, V unitary, T, S tridiagonal:

 $T = U^H A V, \qquad S = \hat{U}^H A \hat{V}.$

sub- and superdiagonal elements different from zero.

When

$$U \boldsymbol{e}_1 = \hat{\omega} \hat{U} \boldsymbol{e}_1, \quad V \boldsymbol{e}_1 = \omega \hat{V} \boldsymbol{e}_2, \quad |\omega_1| = |\hat{\omega}_1| = 1.$$

then unitary diagonal D and D exist, such that

$$VD = \hat{V}, \quad U\hat{D} = \hat{U} \quad and \quad |T| = |S|.$$

Essential uniqueness: Case 2

Case 2: sub- and superdiagonal elements can be zero.

Theorem

Same assumptions as before;

 $K = \min\{i|s_{i+1,i} = 0\}, \text{ and } L = \min\{i|s_{i,i+1} = 0\}.$

Then we have three different cases:

● K < L.</p>

- Columns 1 up to K of U and Û are essentially unique.
- Columns 1 up to K+1 of V and \hat{V} are essentially unique.
- For $1 \le k \le K$ and $1 \le l \le K + 1$: $|t_{k,l}| = |s_{k,l}|$.

L < K. Similar.

• K = L. Similar.

Conclusions

Essential uniqueness: Case 2

Below the resulting T is depicted: The \boxtimes denote the essentially unique parts.

Outline

- Unitary Equivalence relation
 - Householder equivalence tridiagonalization
 - Lanczos equivalence tridiagonalization
 - Essential uniqueness

The normal case

- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties
- 3 Associated Krylov spaces
 - Krylov subspaces
 - Krylov matrices
 - Examples
- Igenvalues and singular values
 - **5** Conclusions

Main theorem

Theorem

Given a normal $A \in \mathbb{C}^{n \times n}$.

For U, V, with $Ue_1 = \omega Ve_1$ ($|\omega| = 1$) such that

 $U^H A V = T$

with T tridiagonal having

subdiagonal elements β_i ,

superdiagonal elements γ_i .

We have (assume γ_i and β_i different from 0):

 $|\beta_i| = |\gamma_i|, \quad \forall i = 1, \ldots, n-1.$

In case a γ_i and/or β_i is zero, a sort of restart or equivalently and extra relation needs to be put on *U* and *V*.

Comments on the proof

By induction on k (three steps):

 $\bigcirc |\gamma_k| = |\beta_k|.$

3 A recurrence in bivariate polynomials is proven for $A^H \mathbf{u}_{k+1}$ and $A \mathbf{v}_{k+1}$:

$$\begin{aligned} \mathbf{A}^{H}\mathbf{u}_{k+1} &= \frac{1}{\beta_{1:k}} \left(\mathbf{A}^{H} \frac{\beta_{1:k-1}}{\bar{\gamma}_{1:k-1}} \,\overline{p}_{k}(\mathbf{A}^{H}, \mathbf{A}) - \beta_{k-1}\gamma_{k-1}p_{k-1}(\mathbf{A}, \mathbf{A}^{H}) - \alpha_{k}p_{k}(\mathbf{A}, \mathbf{A}^{H}) \right) \mathbf{v}_{1} \\ &= \frac{1}{\beta_{1:k}} p_{k+1}(\mathbf{A}, \mathbf{A}^{H}) \mathbf{v}_{1} \end{aligned}$$

and a similar relation

$$A\mathbf{v}_{k+1} = \frac{1}{\overline{\gamma}_{1:k}}\overline{\rho}_{k+1}(A^H,A)\mathbf{v}_1,$$

 $\beta_0 = \gamma_0 = 0, p_0 = 0 \text{ and } p_1(x, y) = y.$

Sased on these results we get $||A\mathbf{v}_{k+1}||_2 = ||A^H\mathbf{u}_{k+1}||_2$.

This has also consequences on the implementation.

Scalar product spaces

For A normal we have a factorization

$$U^{H}AV = T = SD,$$

with S complex symmetric and D unitary diagonal.

Scalar product spaces

• For A normal we have a factorization

$$U^H A V = T = S D_s$$

with S complex symmetric and D unitary diagonal.

• Consider the bilinear form (Ω is a weight matrix):

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\Omega} = \mathbf{x}^T \Omega \mathbf{y}.$$

The adjoint of A w.r.t. $\langle \cdot, \cdot \rangle_{\Omega}$ is A^* :

$$\langle A\mathbf{x}, \mathbf{y} \rangle_{\Omega} = \langle \mathbf{x}, A^{\star} \mathbf{y} \rangle_{\Omega}, \quad \text{ for } \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}.$$

A closed formula:

 $A^{\star} = \Omega^{-1} A^{T} \Omega,$

Scalar product spaces

• For A normal we have a factorization

$$U^H A V = T = S D_s$$

with S complex symmetric and D unitary diagonal.

• Consider the bilinear form (Ω is a weight matrix):

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\Omega} = \mathbf{x}^T \Omega \mathbf{y}.$$

The adjoint of A w.r.t. $\langle \cdot, \cdot \rangle_{\Omega}$ is A^* :

$$\langle A\mathbf{x}, \mathbf{y} \rangle_{\Omega} = \langle \mathbf{x}, A^{\star} \mathbf{y} \rangle_{\Omega}, \quad \text{ for } \quad \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}.$$

A closed formula:

$$A^{\star} = \Omega^{-1} A^T \Omega,$$

• It is easily checked that for $\Omega = D$:

$$T^* = D^{-1}T^T D,$$

= $D^{-1}(SD)^T D,$
= $T.$

Hence, T is self-adjoint w.r.t. $\langle \cdot, \cdot \rangle_D$.

Compact formulation of the main theorem.

Theorem

For $A \in \mathbb{C}^{n \times n}$ normal and $U^H A V = T$, satisfying the conditions above we get: T is self-adjoint w.r.t. $\langle \cdot, \cdot \rangle_{\Omega}$, with Ω a unitary diagonal matrix.

Compact formulation of the main theorem.

Theorem

For $A \in \mathbb{C}^{n \times n}$ normal and $U^H A V = T$, satisfying the conditions above we get: T is self-adjoint w.r.t. $\langle \cdot, \cdot \rangle_{\Omega}$, with Ω a unitary diagonal matrix.

We have an even stronger result.

Theorem

For $A \in \mathbb{C}^{n \times n}$ normal and Ω a unitary diagonal. There exists U and V ... such that $U^H A V = T$ is tridiagonal and T is self-adjoint w.r.t. $\langle \cdot, \cdot \rangle_{\Omega}$.

Specific reductions

Construct the unitary matrices U and V such that $U^{H}AV = T$.

- T is tridiagonal having superdiagonals γ_i and subdiagonals β_i :

 - 2 $\gamma_i = \pm \beta_i$ Pseudo-Symmetric reduction.
 - **(a)** $\gamma_i = -\beta_i$ Skew-Symmetric reduction.
 - (4) $\gamma_i = \overline{\beta}_i$ Hermitian reduction.
 - **(**) $\gamma_i = \pm \overline{\beta}_i$ Pseudo-Hermitian reduction.
 - **(b)** $\gamma_i = -\overline{\beta}_i$ Skew-Hermitian reduction.

Specific reductions

Construct the unitary matrices U and V such that $U^{H}AV = T$.

- T is tridiagonal having superdiagonals γ_i and subdiagonals β_i :

 - 2 $\gamma_i = \pm \beta_i$ Pseudo-Symmetric reduction.
 - **(3)** $\gamma_i = -\beta_i$ Skew-Symmetric reduction.

(4) $\gamma_i = \overline{\beta}_i$ Hermitian reduction.

- $\gamma_i = \pm \overline{\beta}_i$ Pseudo-Hermitian reduction.
- **(b)** $\gamma_i = -\overline{\beta}_i$ Skew-Hermitian reduction.
- Examples of the nomenclature:

(all related to certain $\langle \cdot, \cdot \rangle_{\Omega}$ [2×Mackey + Tisseur, SIMAX, 2005])

- Signature matrix: D has ± 1 on the diagonal.
- 2 Pseudo-symmetric: A = SD, with S symmetric, D signature matrix.
- Complex pseudo skew-symmetric: A = SD, S complex skew-symmetric, D a signature matrix.

Structure of the resulting tridiagonal matrix

Left: specific normal matrices.

Top: type of reduction performed, with relation between γ_i and β_i .

Matrix	F	Arb. (Ω) $ \gamma_i = \beta_i $	Sym. $(\Omega = I)$ $\gamma_i = \beta_i, \gamma_i, \beta_i \in \mathbb{R}$	PseuSym. ($\Omega = D$) $\gamma_i = \pm \beta_i, \gamma_i, \beta_i \in \mathbb{R}$	$\begin{array}{l} \textbf{SkSym.} \ (\Omega = \boldsymbol{\Sigma}) \\ \gamma_i = -\beta_i, \gamma_i, \beta_i \in \mathbb{R} \end{array}$	
Normal	R	PseuSym. Sym. PseuSym. Ps		PseuSym.		
Sym.	R	PseuSym.	PseuSym. Sym. PseuSym. Ps		PseuSym.	
SkSym.	R	PseuSkSym. PseuSkSym. PseuSkSy		PseuSkSym.	SkSym.	
Orth.	R	PseuSym. Orth. Block-Diag.	Sym. Orth. Block-Diag.	Orth. Orth. Orth.		
Normal	C	X	CplxSym.	Cplx. PseuSym.	seuSym. Cplx. PseuSym.	
Herm.	C	X	X CplxSym. Cplx. PseuSym.		Cplx. PseuSym.	
SkHerm.	C	X CplxSym. Cplx. PseuSym. C		Cplx. PseuSym.		
Unitary	C	X Unit. Block-Diag.	CplxSym. Unit. Block-Diag.	Cplx. PseuSym. Unit. Block-Diag.	t. Unit.	

Structure of the resulting tridiagonal matrix

Matrix Type	F	Herm.	PseuHerm.	Skew-Herm.
		$\gamma_i = \overline{\beta}_i, \gamma_i, \beta_i \in \mathbb{C}$	$\gamma_i = \pm \beta_i, \gamma_i, \beta_i \in \mathbb{C}$	$\gamma_i = -\beta_i, \gamma_i, \beta_i \in \mathbb{C}$
Normal R		Sym.	PseuSym.	PseuSym.
Sym	R	Sym.	PseuSym.	PseuSym.
Skew-Sym.	R	PseuSkew-Sym.	PseuSkew-Sym.	Skew-Sym.
Orthogonal	R	Sym. Orth. Block-Diag.	PseuSym Orth. Block-Diag.	PseuSym Orth. Block-Diag.
Normal	C	X	Х	Х
Herm.	C	Herm.	PseuHerm.	PseuHerm.
Skew-Herm.	Skew-Herm. C PseuSkew-Herm.		PseuSkew-Herm.	Skew-Herm.
Unitary C		Unitary Block-Diag.	Unitary Block-Diag.	Unitary Block-Diag.

Link with well-known methods

One can easily prove that:

- Applying symmetric reduction on symmetric matrix → standard similarity.
- Applying skew-symmetric reduction on skew-symmetric matrix → standard similarity.
- Applying hermitian reduction on hermitian matrix → standard similarity.
- Applying skew-hermitian reduction on skew-hermitian matrix → standard similarity.

Few extra properties

Suppose $U^{H}AV = T$, with *T* complex symmetric (i.e. $\gamma_{i} = \beta_{i}$):

- *UV^H*, *VU^H* are complex symmetric.
- $U^H A^i V$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $V^H A^i U$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $U^H(A^H)^i V$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $V^H(A^H)^i U$ (with $i \in \mathbb{Z}$) is complex symmetric.
- $U^H p(A, A^H, A^{-1}) V$ is complex symmetric (*p* a polynomial).
- $V^H p(A, A^H, A^{-1})U$ is complex symmetric (*p* a polynomial).
- $U^H A U = \overline{V^H A^H V}$.
- $A = (UT\overline{U})(U^T V^H)$ is a unitary complex symmetric factorization.

Outline

- Unitary Equivalence relation
 - Householder equivalence tridiagonalization
 - Lanczos equivalence tridiagonalization
 - Essential uniqueness

2 The normal case

- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties

Associated Krylov spaces

- Krylov subspaces
- Krylov matrices
- Examples
- Eigenvalues and singular values
 - **Conclusions**

Krylov subspace approach

We switch back to the arbitrary matrix case:

A is not necessarily normal anymore!

• Let us define the following 'cyclical' Krylov sequences (*k* equals the number of terms):

$$C_k(A, \mathbf{x}) = \operatorname{span}\{\mathbf{x}, A\mathbf{y}, AA^H\mathbf{x}, AA^H\mathbf{x}, AA^HA\mathbf{y}, (AA^H)^2\mathbf{x}, \ldots\}$$

$$C_k(A^H, \mathbf{y}) = \operatorname{span}\{\mathbf{y}, A^H\mathbf{x}, A^H\mathbf{x}, A^HA\mathbf{y}, A^HAA^H\mathbf{x}, (AA^H)^2\mathbf{y}, \ldots\}.$$

• NOTE: this is NOT the unsymmetric Lanczos process $(W^H U = I)!$

$$\begin{aligned} \mathcal{K}_k(A, \mathbf{u}_1) &= \operatorname{span}\{\mathbf{u}_1, A\mathbf{u}_1, A^2\mathbf{u}_1, A^3\mathbf{u}_1, \ldots\} \\ \mathcal{K}_k(A^H, \mathbf{w}_1) &= \operatorname{span}\{\mathbf{w}_1, A^H\mathbf{w}_1, (A^H)^2\mathbf{w}_1, (A^H)^3\mathbf{w}_1, \ldots\}. \end{aligned}$$

Krylov subspace approach

Considering the following Krylov space

$$\mathcal{K}\left(\left[\begin{array}{cc} 0 & A \\ A^{H} & 0 \end{array}\right], \left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array}\right]\right)$$

$$= \operatorname{span}\left\{\left[\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array}\right], \left[\begin{array}{c} A\mathbf{y} \\ A^{H}\mathbf{x} \end{array}\right], \left[\begin{array}{c} AA^{H}\mathbf{x} \\ A^{H}A\mathbf{y} \end{array}\right], \left[\begin{array}{c} AA^{H}A\mathbf{y} \\ A^{H}AA^{H}\mathbf{x} \end{array}\right], \ldots\right\}$$

- Similar results as for the cyclical Krylov approach can be obtained when putting also the vectors **x** and **y** in a matrix and apply block Lanczos.
- This leads to a sort of block product Krylov subspace process. [Kressner, Watkins, ...]

Krylov subspace approach

• Let us define the following 'cyclical' Krylov sequences (*k* equals the number of terms):

$$C_k(A, \mathbf{x}) = \operatorname{span}\{\mathbf{x}, A\mathbf{y}, AA^H \mathbf{x}, AA^H A\mathbf{y}, (AA^H)^2 \mathbf{x}, \ldots\}$$

$$C_k(A^H, \mathbf{y}) = \operatorname{span}\{\mathbf{y}, A^H \mathbf{x}, A^H A \mathbf{y}, A^H A A^H \mathbf{x}, (AA^H)^2 \mathbf{y}, \ldots\}.$$

We have

$$\begin{array}{rcl} AC_k(A^H,\mathbf{y}) & \subset & C_{k+1}(A,\mathbf{x}), \\ A^H C_k(A,\mathbf{x}) & \subset & C_{k+1}(A,\mathbf{y}). \end{array}$$

• Consider two orthogonal bases $(\forall k)$:

$$\begin{aligned} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_k\} & \text{spanning} \quad \mathcal{C}_k(\mathcal{A}, \mathbf{x}), \\ \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_k\} & \text{spanning} \quad \mathcal{C}_k(\mathcal{A}^H, \mathbf{y}). \end{aligned}$$

Orthogonal relations

Since

$$\begin{split} \mathbf{v}_k &\in \mathcal{C}_{k+1}(A^H, \mathbf{y}) \backslash \mathcal{C}_k(A^H, \mathbf{y}) \quad \text{and} \quad \langle A \mathbf{v}_k, \mathbf{u}_i \rangle = \langle \mathbf{v}_k, A^H \mathbf{u}_i \rangle, \\ \mathbf{u}_k &\in \mathcal{C}_{k+1}(A, \mathbf{x}) \backslash \mathcal{C}_k(A, \mathbf{x}) \quad \text{and} \quad \langle A^H \mathbf{u}_k, \mathbf{v}_i \rangle = \langle \mathbf{u}_k, A \mathbf{v}_i \rangle. \\ \text{we have (for } 1 \leq i \leq k-2), \end{split}$$

 $A\mathbf{v}_k \perp \mathbf{u}_i$ and $A\mathbf{u}_k \perp \mathbf{v}_i$.

Hence, we get (assume β_i and γ_i different from zero):

$$\begin{aligned} \mathbf{A}\mathbf{v}_{i} &= \gamma_{i-1}\mathbf{u}_{i-1} + \alpha_{i}\mathbf{u}_{i} + \beta_{i+1}\mathbf{u}_{i+1}, \\ \mathbf{A}^{H}\mathbf{u}_{i} &= \overline{\beta}_{i-1}\mathbf{v}_{i-1} + \overline{\alpha}_{i}\mathbf{v}_{i} + \overline{\gamma}_{i+1}\mathbf{v}_{i+1}, \end{aligned}$$

where $\beta_{i+1} = \langle \mathbf{u}_{i+1}, A\mathbf{v}_i \rangle, \alpha_i = \langle \mathbf{u}_i, A\mathbf{v}_i \rangle$ and $\gamma_{i-1} = \langle \mathbf{u}_{i-1}, A\mathbf{v}_i \rangle$. This leads to

$$\begin{aligned} AV_k &= U_k T_k + \beta_{k+1} \mathbf{u}_{k+1} \mathbf{e}_k^T, \\ A^H U_k &= V_k T_k^H + \bar{\gamma}_{k+1} \mathbf{v}_{k+1} \mathbf{e}_k^T. \end{aligned}$$

Cyclical Krylov matrices

Consider cyclical krylov matrices:

$$C_k(A, \mathbf{x}) = \begin{bmatrix} \mathbf{x}, A\mathbf{y}, AA^H \mathbf{x}, AA^H A\mathbf{y}, (AA^H)^2 \mathbf{x}, \dots \end{bmatrix}$$
$$C_k(A^H, \mathbf{y}) = \begin{bmatrix} \mathbf{y}, A^H \mathbf{x}, A^H A \mathbf{y}, A^H A A^H \mathbf{x}, (AA^H)^2 \mathbf{y}, \dots \end{bmatrix}.$$

To prove the main theorem a small lemma is needed.

Lemma

Suppose $AV = U\hat{A}$ and $A^{H}U = V\hat{A}^{H}$ then: $UC_{k}(\hat{A}, \mathbf{x}) = C_{k}(A, U\mathbf{x}),$ $VC_{k}(\hat{A}^{H}, \mathbf{y}) = C_{k}(A, V\mathbf{y}).$

Theorem

For U and V unitary, $U^H AV = T$ is tridiagonal if and only if the columns of U and V define an orthonormal basis for a specific cyclical Krylov subspace.

- The \leftarrow is proved before.
- The \Rightarrow : *T* is tridiagonal, hence we have (*R*, \hat{R} upper triangular):

$$C_k(T, \mathbf{e}_1) = R$$
 and $C_k(T^H, \mathbf{e}_1) = \hat{R}$;

Since AV = UT and $A^{H}U = VT^{H}$ we can apply the lemma:

$$UR = UC_k(T, \mathbf{e}_1) = C_k(A, \mathbf{u}_1),$$

$$V\hat{R} = VC_k(T^H, \mathbf{e}_1) = C_k(A^H, \mathbf{v}_1).$$

On the left two *QR*-factorizations are shown, hence *U* and *V* define an orthonormal basis for $C_k(A, \mathbf{u}_1)$ and $C_k(A^H, \mathbf{v}_1)$ respectively.

(Skew-)Hermitian matrices

• When $A = A^H$ is Hermitian, we get:

$$\mathcal{C}_k(A^H, \mathbf{x}) = \mathcal{C}_k(A, \mathbf{x}) = \operatorname{span}\{\mathbf{x}, A\mathbf{x}, A^2\mathbf{x}, A^3\mathbf{x}, \dots, A^{k-1}\mathbf{x}\}.$$

this is that standard Krylov subspace $\mathcal{K}_k(A, \mathbf{x})$.

• Hence we have $U^H A U = T$ with U unitary, T hermitian.

• When $-A = A^H$ is skew-Hermitian we get:

$$\begin{array}{lll} \mathcal{C}_{k}(\mathcal{A},\mathbf{x}) &=& \operatorname{span}\{\mathbf{x},\mathcal{A}\mathbf{x},-\mathcal{A}^{2}\mathbf{x},-\mathcal{A}^{3}\mathbf{x},\mathcal{A}^{4}\mathbf{x},\ldots\},\\ \mathcal{C}_{k}(\mathcal{A}^{H},\mathbf{x}) &=& \operatorname{span}\{\mathbf{x},-\mathcal{A}\mathbf{x},-\mathcal{A}^{2}\mathbf{x},\mathcal{A}^{3}\mathbf{x},\mathcal{A}^{4}\mathbf{x},\ldots\},\\ \mathcal{K}_{k}(\mathcal{A},\mathbf{x}) &=& \operatorname{span}\{\mathbf{x},\mathcal{A}\mathbf{x},\mathcal{A}^{2}\mathbf{x},\mathcal{A}^{3}\mathbf{x},\mathcal{A}^{4},\mathbf{x},\ldots\}. \end{array}$$

• Hence we have $U^H A U = T$ with U unitary, T skew-hermitian.

Unitary matrices

- A is unitary $AA^H = A^H A = I$.
- Let us distinguish between two cases:
 - Starting vector is an eigenvector v.

$$C_2(A, \mathbf{v}) = C_1(A, \mathbf{v})$$
$$C_2(A^H, \mathbf{v}) = C_1(A^H, \mathbf{v})$$

as a result we have a 1 \times 1 block on the diagonal and a restart is required. $\bullet~$ If v is not an eigenvector:

$$C_{3}(A, \mathbf{v}) = \operatorname{span}\{\mathbf{v}, A\mathbf{v}, AA^{H}\mathbf{v}\}$$
$$= \operatorname{span}\{\mathbf{v}, A\mathbf{v}, I\mathbf{v}\}$$
$$= \operatorname{span}\{\mathbf{v}, A\mathbf{v}\} = C_{2}(A, \mathbf{v}).$$

and also

$$\mathcal{C}_3(A^H,\mathbf{v})=\mathcal{C}_2(A^H,\mathbf{v}),$$

as a result we have a 2×2 block on the diagonal and a restart is required.

 So generically always a block tridiagonal with 2 × 2 blocks on the diagonal. (Eventually a trailing 1 × 1 block when n is odd.)

Outline

- Unitary Equivalence relation
 - Householder equivalence tridiagonalization
 - Lanczos equivalence tridiagonalization
 - Essential uniqueness

2 The normal case

- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties

3 Associated Krylov spaces

- Krylov subspaces
- Krylov matrices
- Examples
- 4 Eigenvalues and singular values
 - **Conclusions**

General remarks

Intimitely related:

- $A = W \Delta W^H$ Eigenvalue decomposition,
- $A = U\Sigma V^H$ Singular value decomposition,
- $\Sigma = |\Delta| = \Delta D D$ unitary diagonal.

$$V^H U = D.$$

- Given the eigenvalues Δ :
 - \rightarrow we have the singular values $\Sigma = |\Delta|$.
- Given the eigenvalue decomposition $W\Delta W^H$: \rightarrow we have the SVD: $W |\Delta| (\overline{D}W^H) = W \Sigma (\overline{D}W^H)$.
- Given the singular values Σ:
 - \rightarrow NOT possible to compute eigenvalues.
- Given the singular value decomposition $U\Sigma V^H$:
 - \rightarrow we have the eigenvalue decomposition since we have

 $V^H U = D$ and $\Delta = \Sigma \overline{D}$.

For the moment no efficient technique for computing the eigenvalues, exploiting the normal matrix structure exists.

SVD-method for normal matrices

Computing the full SVD.

- Reduction to bidiagonal form B:
 - \rightarrow Compute and store 2*n*-3 Householder transformations.
- Compute SVD of $B = U\Sigma V^H$:
 - \rightarrow combine all performed chasing transformations,
 - \rightarrow store the two unitary matrices *U* and *V*.

SVD-method for normal matrices

Computing the full SVD.

- Reduction to bidiagonal form *B*:
 - \rightarrow Compute and store 2*n*-3 Householder transformations.
- Compute SVD of $B = U\Sigma V^H$:
 - \rightarrow combine all performed chasing transformations,
 - \rightarrow store the two unitary matrices *U* and *V*.
- Reduction to complex tridiagonal form *T*:
 - \rightarrow Compute and store 2*n*-4 Householder transformations.
- Compute SVD of T:
 - T is complex symmetric, hence SVD \rightarrow Takagi factorization.

$$T = U\Sigma V^H = Q\Sigma Q^T,$$

with Q unitary.

- Based on the *QR*-iteration on *TT^H*.
- Faster, less memory than the standard SVD, when Q is desired.
- See [Gragg, Bunse-Gerstner, JCAM, 1988]

Outline

- Unitary Equivalence relation
 - Householder equivalence tridiagonalization
 - Lanczos equivalence tridiagonalization
 - Essential uniqueness

2 The normal case

- Main theorem
- Scalar product spaces
- Specific reductions
- Few extra properties

Associated Krylov spaces

- Krylov subspaces
- Krylov matrices
- Examples
- Igenvalues and singular values

5 Conclusions

Conclusions

- Tridiagonal matrices unitary equivalent with normal matrices were studied.
- A generalization of well-known methods for specific normal matrices.
 - Specific reduction types;
 - Krylov relations.
- Alternative computation of the SVD of normal matrices, starting point for further research.

Important references

- L. Elsner;
- Kh. D. Ikramov;
- H. Fassbender;
- R. Grone & Johnsson & E. M. Sa;
- R. Horn & C. Johnsson;
- C. Mehl.

