\mathcal{H}_2 -optimal approximation of linear dynamical systems

P. VAN DOOREN, K. GALLIVAN, P.A. ABSIL CESAME, Université Catholique de Louvain, Belgium SCS, Florida State University, USA

Model reduction simplifies complex models for simulation, optimization and control

from 52800 to 40 differential equations

Dongting Lake Bridge has now MR dampers to control (dampen) wind-induced vibration

We mainly look at discrete-time state-space models

 $\begin{cases} \text{(explicit) time-varying} \\ x_{k+1} &= A_k x_k + B_k u_k \\ y_k &= C_k x_k \end{cases}$

 $\begin{cases} \text{(explicit) time-invariant} \\ x_{k+1} &= Ax_k + Bu_k \\ y_k &= Cx_k \end{cases}$

Time invariant model reduction idea

where $n \ll N$, $\hat{A} = W^T A V$, $\hat{B} = W^T B$, $\hat{C} = C V$

 $P = VW^T$ is a projector for $W^T V = I_n$

$$E(z) := H(z) - \hat{H}(z) = C(zI_N - A)^{-1}B - \hat{C}(zI_n - \hat{A})^{-1}\hat{B}$$

Error model

The difference of the systems

$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases} \quad \text{and} \quad \begin{cases} \hat{x}_{k+1} = \hat{A}\hat{x}_k + \hat{B}u_k \\ \hat{y}_k = \hat{C}\hat{x}_k \end{cases}$$

is the error model, where $e_k := y_k - \hat{y}_k$

$$\begin{cases} \tilde{x}_{k+1} = A_e \tilde{x}_k + B_e u_k \\ e_k = C_e \tilde{x}_k \end{cases}$$

with

$$(A_e, B_e, C_e) := \left(\begin{bmatrix} A \\ & \hat{A} \end{bmatrix}, \begin{bmatrix} B \\ \hat{B} \end{bmatrix}, \begin{bmatrix} C & -\hat{C} \end{bmatrix} \right),$$

and transfer function

$$E(z) := H(z) - \hat{H}(z) = C_e (zI - A_e)^{-1} B_e$$

Frequency and time response matching

Minimizing the cost $\mathcal{J} := ||E(z)||_{\mathcal{H}_2} := tr \int_{-\infty}^{\infty} E(e^{j\omega}) E(e^{j\omega})^H \frac{d\omega}{2\pi}$ ensures the frequency response to match

and the time responses to match if H(z) and $\hat{H}(z)$ are stable since

$$\mathcal{J} = \operatorname{tr} \sum_{k=0}^{\infty} (C_e A_e^k B_e) (C_e A_e^k B_e)^T$$

How to evaluate this norm?

$$\mathcal{J} = \operatorname{tr}\left(C_e P_e C_e^T\right) = \operatorname{tr}\left(B_e^T Q_e B_e\right)$$

where P_e and Q_e solve the Stein equations

$$A_e P_e A_e^T + B_e B_e^T = P_e, \quad A_e^T Q_e A_e + C_e^T C_e = Q_e$$

One can also partition

$$P_e := \begin{bmatrix} P & X \\ X^T & \hat{P} \end{bmatrix}, \quad Q_e := \begin{bmatrix} Q & Y \\ Y^T & \hat{Q} \end{bmatrix}$$

and solve

$$\begin{bmatrix} A \\ & \hat{A} \end{bmatrix} \begin{bmatrix} P & X \\ X^T & \hat{P} \end{bmatrix} \begin{bmatrix} A^T \\ & \hat{A}^T \end{bmatrix} + \begin{bmatrix} B \\ \hat{B} \end{bmatrix} \begin{bmatrix} B^T & \hat{B}^T \end{bmatrix} = \begin{bmatrix} P & X \\ X^T & \hat{P} \end{bmatrix},$$
$$\begin{bmatrix} A^T \\ & \hat{A}^T \end{bmatrix} \begin{bmatrix} Q & Y \\ Y^T & \hat{Q} \end{bmatrix} \begin{bmatrix} A \\ & \hat{A} \end{bmatrix} + \begin{bmatrix} C^T \\ -\hat{C}^T \end{bmatrix} \begin{bmatrix} C & -\hat{C} \end{bmatrix} = \begin{bmatrix} Q & Y \\ Y^T & \hat{Q} \end{bmatrix}$$

Derive to maximize

Let us define the gradient of a scalar function f(X) as

$$[\nabla_X f(X)]_{i,j} = \frac{d}{dX_{i,j}} f(X), \quad i = 1, \dots, n, \quad j = 1, \dots, p$$

then the gradients $\nabla_{\hat{A}}\mathcal{J}, \nabla_{\hat{B}}\mathcal{J}, \nabla_{\hat{C}}\mathcal{J}$ satisfy the equations

$$\frac{1}{2}\nabla_{\hat{A}}\mathcal{J} = \hat{Q}\hat{A}\hat{P} + Y^TAX, \quad \frac{1}{2}\nabla_{\hat{B}}\mathcal{J} = \hat{Q}\hat{B} + Y^TB, \quad \frac{1}{2}\nabla_{\hat{C}}\mathcal{J} = \hat{C}\hat{P} - CX$$

where

$$A^T Y \hat{A} - C^T \hat{C} = Y, \quad \hat{A}^T \hat{Q} \hat{A} + \hat{C}^T \hat{C} = \hat{Q},$$
$$\hat{A} X^T A^T + \hat{B} B^T = X^T, \quad \hat{A} \hat{P} \hat{A}^T + \hat{B} \hat{B}^T = \hat{P}$$

Imposing zero gradients yields non-minimal optimality conditions! Wilson 70, but rederived several times

Algorithm for minimizing $||E(z)||_{\mathcal{H}_2}$

Define $(X, Y, \hat{P}, \hat{Q}) = F(\hat{A}, \hat{B}, \hat{C})$ where $A^T Y \hat{A} - C^T \hat{C} = Y. \quad \hat{A}^T \hat{Q} \hat{A} + \hat{C}^T \hat{C} = \hat{Q}.$ $\hat{A}X^T A^T + \hat{B}B^T = X^T, \quad \hat{A}\hat{P}\hat{A}^T + \hat{B}\hat{B}^T = \hat{P}$ and then compute $(\hat{A}, \hat{B}, \hat{C}) = G(X, Y, \hat{P}, \hat{Q})$ from $W := -Y\hat{Q}^{-1}, V := X\hat{P}^{-1} \hat{A} = W^T A V, \hat{B} = W^T B, \hat{C} = CV,$ The fixed point of $(\hat{A}, \hat{B}, \hat{C}) = G(F(\hat{A}, \hat{B}, \hat{C}))$ are also stationary points of $||E(z)||_{\mathcal{H}_2}$ and satisfy the interpolation conditions One can also define a CG-like method or even a Newton-like method (see Antoulas-Sorenson, Beattie-Gugercin)

Critical point conditions?

But for first order poles

$$\hat{H}(z) = \sum_{i=1}^{n} \frac{\hat{c}_i \hat{b}_i^H}{z - \hat{\lambda}_i},$$

one obtains the interpolation conditions (where $H_*(z) := z^{-1} H^T(z^{-1})$)

$$[H_*(\hat{\lambda}_i) - \hat{H}_*(\hat{\lambda}_i)]\hat{c}_i = 0 \quad \hat{b}_i^H [H_*(\hat{\lambda}_i) - \hat{H}_*(\hat{\lambda}_i)] = 0$$
$$\hat{b}_i^H \frac{d}{dz} \left[H_*(z) - \hat{H}_*(z) \right] \Big|_{z = \hat{\lambda}_i} \hat{c}_i$$

Antoulas, Gugercin et al, Van Dooren et al, Bunse Gerstner et al Follows also from gradient expressions and tangential interpolation (Gallivan-Vandendorpe-VD) The first and second order case

Assume a real first order reduced model $\hat{H}(z) = \frac{cb^T}{z-\lambda}$ then the conditions become

$$H_*(\lambda)c = b \frac{c^T c}{\lambda^{-2} - 1}, \quad b^T H_*(\lambda) = c^T \frac{b^T b}{\lambda^{-2} - 1},$$

This says that b and c must be the dominant singular vectors of $H_*(\lambda)$ and can be eliminated from the optimization problem

Assume a real second order reduced model $\hat{H}(z) = \frac{cb^H}{z-\lambda} + \frac{\overline{cb}^H}{z-\overline{\lambda}}$ then the conditions again say that b and c must be the dominant singular vectors of $H_*(\lambda)$ and can be eliminated from the optimization problem

Now look at error $||E(z)||_{\mathcal{H}_2}$ as a function of interpolation point λ

MIMO example (CT, N=20, n=2, m=p=2)

MIMO example (CT, N=20, n=2, m=p=2)

Conditions for higher order poles?

For

$$\hat{H}(z) = \sum_{i=1}^{\ell} \hat{C}_i (zI - \hat{A}_i)^{-1} \hat{B}_i^H,$$

we obtain the following minimal interpolation conditions

$$\begin{split} [H_*(z) - \hat{H}_*(z)] \hat{c}_i(z) &= O(z - \hat{\lambda}_i)^{k_i}, \\ \hat{b}_i^H(z) [H_*(z) - \hat{H}_*(z)] &= O(z - \hat{\lambda}_i)^{k_i}, \\ \hat{b}_i^H(z) [H_*(z) - \hat{H}_*(z)] \hat{c}_i(z) &= O(z - \hat{\lambda}_i)^{2k_i} \\ \end{split}$$
where $\hat{b}_i^H(z) &:= \psi_{\hat{\lambda}_i}(z) \hat{B}_i^H, \quad \hat{c}_i(z) := \hat{C}_i \phi_{\hat{\lambda}_i}(z), \quad \text{and} \\ \phi_{\hat{\lambda}_i}(z) &= \left[1, \dots, (z - \hat{\lambda}_i)^{k-1}\right]^T, \quad \psi_{\hat{\lambda}_i}(z) = \left[(z - \hat{\lambda}_i)^{k-1}, \dots, 1\right] \end{split}$

This does not follow from tangential interpolation conditions of Vandendorpe et al.

About continuity and sensitivity

On the negative side

Every stable and regular *n*-th degree $\hat{H}(z) = \hat{C}(zI_n - \hat{A})^{-1}\hat{B}$ is an optimal \mathcal{H}_2 approximation of some stable and regular *N*-th degree transfer function $H(z) = C(zI_N - A)^{-1}B$ for every N > n.

On the positive side

Let $\hat{H}(z)$ and H(z) be stable and minimal and let $\hat{H}(z)$ be a stationary point of the \mathcal{H}_2 error function. Then every "nearby" transfer function $\hat{H}_{\Delta}(z)$ is a stationary point of a nearby system $H_{\Delta}(z)$. The same holds for every nondegenerate local minimum.

On the negative side again

Since minimal conditions are non-smooth around higher order poles, the interpolation problem becomes poorly conditioned in their neighborhood

Time-varying case

Systems now look like

$$\begin{cases} x_{k+1} = A_k x_k + B_k u_k \\ y_k = C_k x_k \end{cases} \begin{cases} \hat{x}_{k+1} = \hat{A}_k \hat{x}_k + \hat{B}_k u_k \\ \hat{y}_k = \hat{C}_k \hat{x}_k \end{cases}$$

with an error system where $e_k := y_k - \hat{y}_k$

$$\mathcal{E} := \begin{cases} x_{k+1}^e &= A_k^e x_k^e + B_k^e u_k \\ e_k &= C_k^e x_k^e \end{cases}$$

where

$$A_k^e := \begin{bmatrix} A_k & \\ & \hat{A}_k \end{bmatrix}, \quad B_k^e = \begin{bmatrix} B_k \\ \hat{B}_k \end{bmatrix}, \quad C_k^e = \begin{bmatrix} C_k & -\hat{C}_k \end{bmatrix}$$

Its state for initial condition $x_{k_0}^e = 0$ is given by

$$x_{k}^{e} = \sum_{i=k_{0}}^{k-1} \Phi_{k,i+1}^{e} B_{i}^{e} u_{i}, \quad \Phi_{k+1,i}^{e} = A_{k}^{e} \Phi_{k,i}^{e} \ (k \ge i), \quad \Phi_{k,k}^{e} = I$$

Error system response satisfies

$$\tilde{e} = E\tilde{u}, \quad \tilde{e} := \begin{bmatrix} e_{k_0+1} \\ \vdots \\ e_{k_f+1} \end{bmatrix}, \quad \tilde{u} := \begin{bmatrix} u_{k_0} \\ \vdots \\ u_{k_f} \end{bmatrix}, \quad E = D_C H D_B$$

and

$$D_{C} = \begin{bmatrix} C_{k_{0}+1}^{e} & 0 \\ & \ddots & \\ 0 & & C_{k_{f}+1}^{e} \end{bmatrix}, \quad D_{B} = \begin{bmatrix} B_{k_{0}}^{e} & 0 \\ & \ddots & \\ 0 & & B_{k_{f}}^{e} \end{bmatrix}$$
$$H = \begin{bmatrix} \Phi_{k_{0},k_{0}}^{e} & 0 \\ \vdots & \ddots & \\ \Phi_{k_{f},k_{0}}^{e} & \cdots & \Phi_{k_{f},k_{f}}^{e} \end{bmatrix}$$

The "stacked" error system response is $\tilde{e}=E\tilde{u}$ and the cost function to minimize is now given by

$$\|\mathcal{E}\|_{\mathcal{H}_2}^2 := \mathcal{J}(k_0, k_f) := \operatorname{tr}(E^T E) = \operatorname{tr}(E E^T)$$

One shows that

$$\mathcal{J}(k_0, k_f) := \operatorname{tr} \sum_{k=k_0+1}^{k_f+1} C_k^e P_k^e C_k^{e^T} = \operatorname{tr} \sum_{k=k_0}^{k_f} B_k^{e^T} Q_k^e B_k^e$$

where

$$P_{k+1}^{e} = \begin{bmatrix} A_{k} & \\ & \hat{A}_{k} \end{bmatrix} P_{k}^{e} \begin{bmatrix} A_{k}^{T} & \\ & \hat{A}_{k}^{T} \end{bmatrix} + \begin{bmatrix} B_{k} \\ \hat{B}_{k} \end{bmatrix} \begin{bmatrix} B_{k}^{T} & \hat{B}_{k}^{T} \end{bmatrix}, \quad P_{k_{0}}^{e} = 0$$
$$Q_{k-1}^{e} = \begin{bmatrix} A_{k}^{T} & \\ & \hat{A}_{k}^{T} \end{bmatrix} Q_{k}^{e} \begin{bmatrix} A_{k} & \\ & \hat{A}_{k} \end{bmatrix} + \begin{bmatrix} C_{k}^{T} \\ \hat{C}_{k}^{T} \end{bmatrix} \begin{bmatrix} C_{k} & \hat{C}_{k} \end{bmatrix}, \quad Q_{k_{f}+1}^{e} = 0$$

Gradients are now given by

$$\nabla_{\hat{A}_k} \mathcal{J} = 2(\hat{Q}_k \hat{A}_k \hat{P}_k + Y_k^T A_k X_k),$$
$$\nabla_{\hat{B}_k} \mathcal{J} = 2(\hat{Q}_k \hat{B}_k + Y_k^T B_k),$$
$$\nabla_{\hat{C}_k} \mathcal{J} = 2(\hat{C}_k \hat{P}_k - C_k X_k)$$

Updating rules and fixed point results are as before

$$W_{k} := Y_{k}\hat{Q}_{k}^{-1}, V_{k} = X_{k}\hat{P}_{k}^{-1}$$

$$(A_{k}^{e}, B_{k}^{e}, C_{k}^{e}) := (W_{k}^{T}A_{k}V_{k}, W_{k}^{T}B_{k}, C_{k}V_{k}).$$
where X_{k} , \tilde{P}_{k} , \tilde{Q}_{k} satisfy Stein like recurrences
$$X_{k+1} = A_{k}X_{k}\hat{A}_{k}^{T} + B_{k}\hat{B}_{k}^{T}, \quad X_{k_{0}} = 0$$

$$\hat{P}_{k+1} = \hat{A}_{k}\hat{P}_{k}\hat{A}_{k}^{T} + \hat{B}_{k}\hat{B}_{k}^{T}, \quad \hat{P}_{k_{0}} = 0$$

$$Y_{k-1} = A_{k}^{T}Y_{k}\hat{A}_{k}^{T} - C_{k}^{T}\hat{C}_{k}, \quad Y_{k_{f}+1} = 0$$

$$\hat{Q}_{k-1} = \hat{A}_{k}^{T}Q_{k}\hat{A}_{k} + \hat{C}_{k}^{T}\hat{C}_{k}, \quad \hat{Q}_{k_{f}+1} = 0$$

Concluding remarks and references

- \mathcal{H}_2 model reduction allows for efficient optimization Gugercin-Beattie-Antoulas
- Interpolation of rational matrix functions
 Ball-Gohberg-Rodman, (OT45, Birkhauser 1990)
- Stationary points of time-invariant case amounts to interpolation Wilson, Gugercin-Beattie, Bunse Gerstner et al, VD-Gallivan-Absil
- Can be extended to discrete time-varying systems VD-Gallivan-Absil
- Time-varying systems have semi-separable Hankel maps Vanderveen-Dewilde
- Higher order case corresponds to Krylov methods Gallivan-Vandendorpe-VD, VD-Gallivan-Absil
- Sylvester equations are solved via rational Krylov Gallivan-Vandendorpe-VD