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Model reduction simplifies complex models
for simulation, optimization and control

from 52800 to 40 differential equations  



Dongting Lake Bridge has now MR dampers 

to control (dampen) wind-induced vibration 



We mainly look at discrete-time state-space models

xk ∈ R
N , N >> m, p

[uk]1 −→
[uk]2 −→

...
[uk]m−→

−→ [yk]1
−→ [yk]2

...
−→ [yk]p

(explicit) time-varying
{

xk+1 = Akxk+Bkuk

yk = Ckxk

(explicit) time-invariant
{

xk+1 = Axk+Buk

yk = Cxk



Time invariant model reduction idea
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where n≪ N , Â = WTAV , B̂ = WTB, Ĉ = CV

P = VWT is a projector for WTV = In

E(z) := H(z) − Ĥ(z) = C(zIN −A)−1B − Ĉ(zIn − Â)−1B̂



Error model

The difference of the systems
{

xk+1 = Axk +Buk

yk = Cxk
and

{

x̂k+1 = Âx̂k + B̂uk

ŷk = Ĉx̂k

is the error model, where ek := yk − ŷk

{

x̃k+1 = Aex̃k +Beuk

ek = Cex̃k

with

(Ae, Be, Ce) :=

([

A

Â

]

,

[

B

B̂

]

,
[

C −Ĉ
]

)

,

and transfer function

E(z) := H(z) − Ĥ(z) = Ce(zI −Ae)
−1Be



Frequency and time response matching

Minimizing the cost J := ‖E(z)‖H2
:= tr

∫ ∞

−∞
E(ejω)E(ejω)H dω

2π

ensures the frequency response to match
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Full order model
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and the time responses to match if H(z) and Ĥ(z) are stable since

J = tr

∞
∑

k=0

(CeA
k
eBe)(CeA

k
eBe)

T



How to evaluate this norm ?

J = tr
(

CePeC
T
e

)

= tr
(

BT
e QeBe

)

where Pe and Qe solve the Stein equations

AePeA
T
e +BeB

T
e = Pe, AT

e QeAe + CT
e Ce = Qe

One can also partition

Pe :=

[

P X

XT P̂

]

, Qe :=

[

Q Y

Y T Q̂

]

and solve
[

A

Â

] [

P X

XT P̂

] [

AT

ÂT

]

+

[

B

B̂

]

[

BT B̂T
]

=

[

P X

XT P̂

]

,

[

AT

ÂT

] [

Q Y

Y T Q̂

] [

A

Â

]

+

[

CT

−ĈT

]

[

C − Ĉ
]

=

[

Q Y

Y T Q̂

]



Derive to maximize

Let us define the gradient of a scalar function f(X) as

[∇Xf(X)]i,j =
d

dXi,j

f(X), i = 1, . . . , n, j = 1, . . . , p

then the gradients ∇ÂJ , ∇B̂J ,∇ĈJ satisfy the equations

1

2
∇ÂJ = Q̂ÂP̂ + Y TAX, 1

2
∇B̂J = Q̂B̂ + Y TB, 1

2
∇ĈJ = ĈP̂ − CX

where
ATY Â− CT Ĉ = Y, ÂT Q̂Â+ ĈT Ĉ = Q̂,

ÂXTAT + B̂BT = XT , ÂP̂ ÂT + B̂B̂T = P̂

Imposing zero gradients yields non-minimal optimality conditions !

Wilson 70, but rederived several times



Algorithm for minimizing ‖E(z)‖H2

Define (X,Y, P̂ , Q̂) = F (Â, B̂, Ĉ) where

ATY Â− CT Ĉ = Y, ÂT Q̂Â+ ĈT Ĉ = Q̂,

ÂXTAT + B̂BT = XT , ÂP̂ ÂT + B̂B̂T = P̂

and then compute(Â, B̂, Ĉ) = G(X,Y, P̂ , Q̂) from

W := −Y Q̂−1, V := XP̂−1 Â = WTAV , B̂ = WTB, Ĉ = CV ,

The fixed point of (Â, B̂, Ĉ) = G(F (Â, B̂, Ĉ)) are also stationary
points of ‖E(z)‖H2

and satisfy the interpolation conditions

One can also define a CG-like method or even a Newton-like
method (see Antoulas-Sorenson, Beattie-Gugercin)



Critical point conditions ?

But for first order poles

Ĥ(z) =

n
∑

i=1

ĉib̂
H
i

z − λ̂i

,

one obtains the interpolation conditions (where
H∗(z) := z−1HT (z−1))

[H∗(λ̂i) − Ĥ∗(λ̂i)]ĉi = 0 b̂Hi [H∗(λ̂i) − Ĥ∗(λ̂i)] = 0

b̂Hi
d

dz
[H∗(z) − Ĥ∗(z)]

∣

∣

∣

z=λ̂i

ĉi

Antoulas, Gugercin et al, Van Dooren et al, Bunse Gerstner et al

Follows also from gradient expressions and tangential interpolation
(Gallivan-Vandendorpe-VD)



The first and second order case

Assume a real first order reduced model Ĥ(z) = cbT

z−λ

then the conditions become

H∗(λ)c = b
cT c

λ−2 − 1
, bTH∗(λ) = cT

bT b

λ−2 − 1
,

This says that b and c must be the dominant singular vectors of
H∗(λ) and can be eliminated from the optimization problem

Assume a real second order reduced model Ĥ(z) = cbH

z−λ
+ cb

H

z−λ

then the conditions again say that b and c must be the dominant
singular vectors of H∗(λ) and can be eliminated from the
optimization problem

Now look at error ‖E(z)‖H2
as a function of interpolation point λ



MIMO example (CT, N=20, n=2, m=p=2)
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MIMO example (CT, N=20, n=2, m=p=2)

−0.8 −0.6 −0.4 −0.2 0
−5

0

5
System poles and low order poles

H2 norm =  13  m= 2  p= 2

 

 
Contour plot of log(H2−error)

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

−5

0

5

−0.8

−0.6

−0.4

−0.2

0

−5
0

5

−0.2

−0.1

0

log(H2−error)

−6 −4 −2 0 2 4 6
2

4

6

8

10

12

14
Sigma max plots

 

 

System
Approx
Error

poles
low order poles



Conditions for higher order poles ?

For

Ĥ(z) =

ℓ
∑

i=1

Ĉi(zI − Âi)
−1B̂H

i ,

we obtain the following minimal interpolation conditions

[H∗(z) − Ĥ∗(z)]ĉi(z) = O(z − λ̂i)
ki ,

b̂Hi (z)[H∗(z) − Ĥ∗(z)] = O(z − λ̂i)
ki ,

b̂Hi (z)[H∗(z) − Ĥ∗(z)]ĉi(z) = O(z − λ̂i)
2ki

where b̂Hi (z) := ψ
λ̂i

(z)B̂H
i , ĉi(z) := Ĉiφλ̂i

(z), and

φ
λ̂i

(z) =
[

1, . . . , (z − λ̂i)
k−1

]T

, ψ
λ̂i

(z) =
[

(z − λ̂i)
k−1, . . . , 1

]

This does not follow from tangential interpolation conditions of
Vandendorpe et al.



About continuity and sensitivity

On the negative side

Every stable and regular n-th degree Ĥ(z) = Ĉ(zIn − Â)−1B̂ is an
optimal H2 approximation of some stable and regular N -th degree
transfer function H(z) = C(zIN −A)−1B for every N > n.

On the positive side

Let Ĥ(z) and H(z) be stable and minimal and let Ĥ(z) be a
stationary point of the H2 error function. Then every “nearby”
transfer function Ĥ∆(z) is a stationary point of a nearby system
H∆(z). The same holds for every nondegenerate local minimum.

On the negative side again

Since minimal conditions are non-smooth around higher order
poles, the interpolation problem becomes poorly conditioned in
their neighborhood



Time-varying case

Systems now look like
{

xk+1 = Akxk +Bkuk

yk = Ckxk

{

x̂k+1 = Âkx̂k + B̂kuk

ŷk = Ĉkx̂k

with an error system where ek := yk − ŷk

E :=

{

xe
k+1 = Ae

kx
e
k +Be

kuk

ek = Ce
kx

e
k

where

Ae
k :=

[

Ak

Âk

]

, Be
k =

[

Bk

B̂k

]

, Ce
k =

[

Ck − Ĉk

]

Its state for initial condition xe
k0

= 0 is given by

xe
k =

k−1
∑

i=k0

Φe
k,i+1B

e
i ui, Φe

k+1,i = Ae
kΦe

k,i (k ≥ i), Φe
k,k = I



Error system response satisfies

ẽ = Eũ, ẽ :=







ek0+1

...
ekf +1






, ũ :=







uk0

...
ukf






, E = DCHDB

and

DC =







Ce
k0+1 0

. . .

0 Ce
kf +1






, DB =







Be
k0

0
. . .

0 Be
kf







H =







Φe
k0,k0

0
...

. . .

Φe
kf ,k0

. . . Φe
kf ,kf









The “stacked” error system response is ẽ = Eũ and the cost
function to minimize is now given by

‖E‖2
H2

:= J (k0, kf ) := tr(ETE) = tr(EET )

One shows that

J (k0, kf ) := tr

kf+1
∑

k=k0+1

Ce
kP

e
kC

eT

k = tr

kf
∑

k=k0

BeT

k Qe
kB

e
k

where

P e
k+1 =

[

Ak

Âk

]

P e
k

[

AT
k

ÂT
k

]

+

[

Bk

B̂k

]

[

BT
k B̂T

k

]

, P e
k0

= 0

Qe
k−1 =

[

AT
k

ÂT
k

]

Qe
k

[

Ak

Âk

]

+

[

CT
k

ĈT
k

]

[

Ck Ĉk

]

, Qe
kf +1 = 0



Gradients are now given by

∇Âk
J = 2(Q̂kÂkP̂k + Y T

k AkXk),

∇B̂k
J = 2(Q̂kB̂k + Y T

k Bk),

∇Ĉk
J = 2(ĈkP̂k − CkXk)

Updating rules and fixed point results are as before

Wk := YkQ̂
−1

k , Vk = XkP̂
−1

k

(Ae
k, B

e
k, C

e
k) := (WT

k AkVk,W
T
k Bk, CkVk).

where Xk, Yk, P̃k, Q̃k satisfy Stein like recurrences

Xk+1 = AkXkÂ
T
k +BkB̂

T
k , Xk0

= 0

P̂k+1 = ÂkP̂kÂ
T
k + B̂kB̂

T
k , P̂k0

= 0

Yk−1 = AT
k YkÂ

T
k − CT

k Ĉk, Ykf+1 = 0

Q̂k−1 = ÂT
kQkÂk + ĈT

k Ĉk, Q̂kf +1 = 0



Concluding remarks and references

– H2 model reduction allows for efficient optimization
Gugercin-Beattie-Antoulas

– Interpolation of rational matrix functions
Ball-Gohberg-Rodman, (OT45, Birkhauser 1990)

– Stationary points of time-invariant case amounts to interpolation
Wilson, Gugercin-Beattie, Bunse Gerstner et al,
VD-Gallivan-Absil

– Can be extended to discrete time-varying systems
VD-Gallivan-Absil

– Time-varying systems have semi-separable Hankel maps
Vanderveen-Dewilde

– Higher order case corresponds to Krylov methods
Gallivan-Vandendorpe-VD, VD-Gallivan-Absil

– Sylvester equations are solved via rational Krylov
Gallivan-Vandendorpe-VD


