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Model reduction simplifies complex models
for simulation, optimization and control

from 52800 to 40 differential equations




Dongting Lake Bridge has now MR dampers

to control (dampen) wind-induced vibration
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We mainly look at discrete-time state-space models

z, €ERN, N>>m, p

(explicit) time-varying
Tp+1 = Apzr+Brug
ye = Ckrg

(explicit) time-invariant
Tht1 — Az + Buy
ye = Cuy




Time 1invariant model reduction idea
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where n< N, A=WTAV, B=WTB, (' =CV

P=VW?" isa projector for WiV =1,

A AN

E(z):=H(z)—H(z) =C(zIy — A 'B—-C(zI, — A~ 'B



Error model

The difference of the systems

{ Tp4+1 = Az + Buy and { Tht1 = Ay, + Buy,

yr = Cxy, U = CA'ZE‘k

is the error model, where ex := yr — Yi

Tit1 = AeXi + Beug
er = CoZ

s ([* [ -0)

and transfer function

E(z):=H(z)— H(z) = C.(2] — A.) "B,

with



Frequency and time response matching

Minimizing the cost J := ||[E(2)|n, = tr [°._ E(el¥)E(el*)H &
ensures the frequency response to match

|Frequency response|
2 e

10 10
Full order model Reduced order model

and the time responses to match if H(z) and H(z) are stable since

oo

J =tr) (CcAfB.)(C.ALB.)"

k=0



How to evaluate this norm ?

T = tr (CePeCZ) = tr (BZQeBe>

where P, and (). solve the Stein equations
AePeAZ + BeBZ — P€7 AZQeAe + Ogoe — Qe

One can also partition

| P X | @Y
EE IR ES

and solve




Derive to maximize

Let us define the gradient of a scalar function f(X) as

d

then the gradients V 37, V37,V sJ satisty the equations

[va(X)]z,j: f(X)7 Zzlaana ]:177]9

IV T =QAP+YTAX, IVyJ=QB+Y"B, lv,J=CP-CX

where ) X o o X
ATYA-CcTCc =Y, ATQA+CTC =0,

AXTAT + BBT = X7, APAT +BBT =P

Imposing zero gradients yields non-minimal optimality conditions!



Algorithm for minimizing ||E(2)||#,

Define (X,Y, P,Q) = F(A, B,C) where
ATYA—CTC =Y, ATQA+CTC =0,
AXTAT + BBT = xT, APAT+BBT =P
and then compute(4, B,C) = G(X,Y, P, Q) from
W:=-YQ L V:=XP1A=WTAV, B=WTB, C=CV,

The fixed point of (4, B,C) = G(F(A, B,C)) are also stationary
points of ||E(z)||x, and satisfy the interpolation conditions

One can also define a CG-like method or even a Newton-like
method



Critical point conditions ?

But for first order poles

one obtains the interpolation conditions (where
H.(z):=z"1H"(z71))

A

[H.(A\i) = Ho(A))es = 0 b [Ho(N) — Ho(A\i)] = 0
pH
Antoulas, Gugercin et al, Van Dooren et al, Bunse Gerstner et al

Follows also from gradient expressions and tangential interpolation
(Gallivan-Vandendorpe-VD)



The first and second order case

Assume a real first order reduced model H (2) = ZCET)\
then the conditions become
cle 7 - bL'p
HNe=bimmy P H) = =

This says that b and ¢ must be the dominant singular vectors of
H,(A) and can be eliminated from the optimization problem

Assume a real second order reduced model H (2) = gb 5 + & = )\

then the conditions again say that b and ¢ must be the dominant
singular vectors of H,(\) and can be eliminated from the
optimization problem

Now look at error ||E(z)||, as a function of interpolation point A



MIMO example (CT, N=20, n=2, m=p=2)
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MIMO example (CT, N=20, n=2, m=p=2)

System poles and low order poles
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Conditions for higher order poles?

For

7

0
H(z) =) Ci(zI—A)'Bf

This does not follow from tangential interpolation conditions of

Vandendorpe et al.



About continuity and sensitivity

On the negative side

Every stable and regular n-th degree H(z) = C(zI,, — A)"'B is an
optimal Hs approximation of some stable and regular N-th degree
transfer function H(z) = C(zIny — A)~'B for every N > n.

On the positive side

Let ﬁ(z) and H(z) be stable and minimal and let ﬁ(z) be a
stationary point of the Hsy error function. Then every “nearby”

transfer function H A(z) is a stationary point of a nearby system
HA(z). The same holds for every nondegenerate local minimum.

On the negative side again

Since minimal conditions are non-smooth around higher order
poles, the interpolation problem becomes poorly conditioned in
their neighborhood



Time-varying case

Systems now look like

Tpt+1 = ApTr + Bruy Tpy1 = z‘:lkwk + Brug
yr = Crxy U = Crayg

with an error system where e; := yr — Ui

£ { T = Ajag + Biuk

e, = CLa}
where
e . Ak e Bk e ~

Its state for initial condition zf = 0 is given by
0

k—1
e e e e _ e Re . e _
Ly = E (I)k,i—i—le' Ug k+1,0 — Al ki (k > @)a kk — I

1=Fko



Error system response satisfies
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The “stacked” error system response is € = Eu and the cost
function to minimize is now given by

€113, = T (ko, k¢) :=tr(E"E) = tr(EE")

One shows that

kf—I—l kf
T T
T (ko,kyf) :=tr g CiP.Cy =tr g By Q5 B;
k=ko+1 k=ko

where

e Ak e AT Bk A e

e AT e A CT A e
Qk—1:[ g AZ]Qk[ ¢ Ak]+[éﬁfp]{0k Ck:}a Qkf+1=()



Gradients are now given by
Vi J = 2(QrAr Py + Y, Ak Xy),
Vi J =2(QrBr + Y, Br),
Ve, J =2(CePr — CuXy)
Updating rules and fixed point results are as before
Wy, := YiQ; ', Vi = X Pt
(A%, By, Cy) = (Wi AgVi, Wy B, Gy, Vi),
where X, Yi, P, Q@ satisfy Stein like recurrences
X1 = A XpAT + B,BF, X3, =0
Povy = AnBoAT + BoBT, Py =0
Vio1 = ALV AT — CECy, Vi, 41 =0
Qr-1=AL QAL+ CLCh, Q1 =0



Concluding remarks and references

'Ho model reduction allows for efficient optimization
Gugercin-Beattie-Antoulas
Interpolation of rational matrix functions

Ball-Gohberg-Rodman, (OT45, Birkhauser 1990)

Stationary points of time-invariant case amounts to interpolation
Wilson, Gugercin-Beattie, Bunse Gerstner et al,
VD-Gallivan-Absil

Can be extended to discrete time-varying systems
VD-Gallivan-Absil

Time-varying systems have semi-separable Hankel maps
Vanderveen-Dewilde

Higher order case corresponds to Krylov methods
Gallivan-Vandendorpe-VD, VD-Gallivan-Absil
Sylvester equations are solved via rational Krylov
Gallivan-Vandendorpe-VD



