Computing the eigenvalues of a companion matrix

Structured Linear Algebra Problems:

Analysis, Algorithms, and Applications
Cortona, Italy
September 15-19, 2008

The problem

Companion matrix
Working with Givens transformations

Representation

Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

Contents

The problem

Companion matrix

Working with Givens transformations

Representation
Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation
Numerical Experiments
Scaling
Comparison

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Outline

The problem
 Companion matrix

Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation
Numerical Experiments
Scaling
Comparison

Computing the eigenvalues of a companion matrix

Marc Van Barel
Joint work with Raf Vandebril and Paul Van Dooren
y,yase

The problem

Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Companion matrix

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift

Initialization
The chasing
The last Givens transformation

Numerical Experiments Scaling
 Comparison

Companion matrix

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van Dooren$$
p(z)=p_{0}+p_{1} z+p_{2} z^{2}+\ldots+p_{n-1} z^{n-1}+z^{n}
$$

with the coefficients $p_{i} \in \mathbb{R}$ or \mathbb{C}
the associated companion matrix C_{p} is defined as:

$$
C_{p}=\left[\begin{array}{cccc}
0 & & & -p_{0} \\
1 & \ddots & & -p_{1} \\
& \ddots & & \vdots \\
& & 1 & -p_{n-1}
\end{array}\right]
$$

The eigenvalues of the companion matrix coincide with the zeros of the associated polynomial $p(z)$, because

$$
p(z)=\operatorname{det}\left(z l-C_{p}\right) .
$$

Unitary plus rank one matrix

$$
\begin{aligned}
C_{p} & =H \quad \text { upper Hessenberg } \\
& =U+\mathbf{u v}^{H} \quad \text { unitary plus rank one }
\end{aligned}
$$

with

$$
\begin{aligned}
U & =\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & \pm 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] \\
\mathbf{v}^{T} & =(0,0, \ldots, 0,1) \\
\mathbf{u}^{T} & =\left(-p_{0} \mp 1,-p_{1}, \ldots,-p_{n-1}\right)
\end{aligned}
$$

Hence, computing the zeros of the polynomial $p(z)$ is equivalent to computing the eigenvalues of the upper Hessenberg, unitary plus rank one matrix

$$
C_{p}=H=U+\mathbf{u} \mathbf{v}^{H} .
$$

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

MaSe

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation
 Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments
 Scaling
 Comparison

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation

Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step
 A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit QR-algorithm with single shift
Initialization
The chasing
The last Givens transformation
Numerical Experiments
Scaling
Comparison

Representation

matrix

The figure corresponds to $G_{5} G_{4} \ldots G_{1} R$. Rewriting the formula we have $G_{1}^{H} \ldots G_{5}^{H} H=R$. Hence G_{5}^{H} annihilates the first subdiagonal element, G_{4}^{H} the second and so forth.

- Givens transformations are a powerful tool for working with structured matrices.
- representation of sequences of Givens transformations by a graphical scheme.
- example: the $Q R$-factorization of a 6×6 Hessenberg

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations

Representation

Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step
 A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments
 Scaling
 Comparison

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Fusion operation

Lemma

Suppose two Givens transformations G_{1} and G_{2} are given.
Then we have that $G_{1} G_{2}=G_{3}$ is again a Givens transformation. We will call this the fusion of Givens transformations.

The proof is trivial. In our graphical schemes, we will depict this as follows:

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Shift-through operation

Often Givens transformations of higher dimensions are considered, i.e., the corresponding 2×2 Givens transformation is embedded in the identity matrix of dimension n.

Lemma (Shift through lemma)

Suppose three 3×3 Givens transformations $\check{G}_{1}, \check{G}_{2}$ and \check{G}_{3} are given, such that the Givens transformations \breve{G}_{1} and \breve{G}_{3} act on the first two rows of a matrix, and \breve{G}_{2} acts on the second and third row (when applied on the left to a matrix).
Then there exist three Givens transformations \hat{G}_{1}, \hat{G}_{2} and \hat{G}_{3} such that

$$
\check{G}_{1} \check{G}_{2} \check{G}_{3}=\hat{G}_{1} \hat{G}_{2} \hat{G}_{3},
$$

where \hat{G}_{1} and \hat{G}_{3} work on the second and third row and \hat{G}_{2}, works on the first two rows.

Proof: a 3×3 unitary matrix can be factorized in different ways. Gives the possibility

- to interchange the order of Givens transformations and
- to obtain different patterns.

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments

Shift-through operation

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van Dooren
Graphically we will depict this rearrangement as follows.

The problem

Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations

> Representation

Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step
 A representation for the unitary matrix Representation of the unitary plus rank one matrix

Implicit QR-algorithm with single shift
 Initialization
 The chasing
 The last Givens transformation

Numerical Experiments
Scaling
Comparison
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation
 Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step

A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments Scaling
 Comparison

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Structure under a QR-step

The companion matrix C_{p} :

$$
\begin{equation*}
C_{p}=H=U+\mathbf{u v}^{H} \tag{1}
\end{equation*}
$$

with H Hessenberg, U unitary and u and v two vectors.
Given a shift μ, perform a step of the $Q R$-iteration onto the matrix H :

$$
\begin{aligned}
H-\mu I & =Q R \\
\hat{H} & =R Q+\mu I=Q^{H} H Q .
\end{aligned}
$$

Applying the similarity transformation onto the terms of (1):

$$
\begin{aligned}
\hat{H} & =Q^{H} H Q=Q^{H} U Q+Q^{H} \mathbf{u} \mathbf{v}^{H} Q \\
& =\hat{U}+\hat{\mathbf{u}} \hat{\mathbf{v}}^{H},
\end{aligned}
$$

with \hat{H} Hessenberg, \hat{U} unitary and $\hat{u}=Q^{H} \mathbf{u}$ and $\hat{\mathbf{v}}=Q^{H} \mathbf{v}$ two vectors.
Hence the unitary plus rank one structure of the Hessenberg matrix is preserved under a step of the $Q R$-iteration.
Exploiting the structure leads to an efficient implicit $Q R$-method.

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a QR-step

A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments Scaling
 Comparison

Unitary plus rank one matrices
Structure under a $Q R$-step A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

A representation for the unitary matrix

Consider

$$
U=H-\mathbf{u v}^{H} .
$$

H is Hessenberg

$\Rightarrow H$ has zeros below the subdiagonal
\Rightarrow the matrix U needs to be of rank 1 below the subdiagonal

$$
U=\left[\begin{array}{llllll}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\boxtimes & \times & \times & \times & \times & \times \\
\boxtimes & \boxtimes & \times & \times & \times & \times \\
\boxtimes & \boxtimes & \boxtimes & \times & \times & \times \\
\boxtimes & \boxtimes & \boxtimes & \boxtimes & \times & \times
\end{array}\right]
$$

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

MaSe

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

A representation for the unitary matrix

$$
U=\left[\begin{array}{llllll}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\boxtimes & \times & \times & \times & \times & \times \\
\boxtimes & \boxtimes & \times & \times & \times & \times \\
\boxtimes & \boxtimes & \boxtimes & \times & \times & \times \\
\otimes & \otimes & \otimes & \boxtimes & \times & \times
\end{array}\right]
$$

By a single Givens transformation acting on row five and six, three elements are annihilated.
The elements to be annihilated are marked with \otimes.

Mathematically, the figure depicts

$$
U=G_{1} U_{1} .
$$

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations

Representation

Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

A representation for the unitary matrix

Applying a second transformation gives us $U=G_{1} G_{2} U_{2}$.

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren
problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

A representation for the unitary matrix

Apply a third Givens transformation on rows three and four.

\Rightarrow the low rank part is completely removed
\Rightarrow The matrix remaining on the right side is now a generalized Hessenberg matrix having two subdiagonals.

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

A representation for the unitary matrix

Peeling of the second subdiagonal, removing successively all elements marked with \otimes, will give us an extra descending sequence of Givens transformations.
These Givens transformations can be found in positions 1 up to 4.

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van DoorenThe problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

A representation for the unitary matrix

In the final step the remaining subdiagonal from the matrix on the right is removed.

In fact we have computed now a $Q R$-factorization of the unitary matrix $U=Q R$ consisting of three sequences of Givens transformations.

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

A representation for the unitary matrix

(2)

We have factored the unitary matrix U as the product of three unitary matrices

$$
U=V W X
$$

with

- V denoting the sequence from 9 to 7 ,
- W the lower sequence from 6 to 3 and
- X the upper sequence from 5 to 1 .

This representation of the unitary matrix will be used in the sum

$$
C_{p}=H=U+\mathbf{u} \mathbf{v}^{H} .
$$

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

Mase

The problem

Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Companion matrix

Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix
Implicit QR-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments
 Scaling
 Comparison

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

A representation for the unitary plus rank one matrix

relation between the low rank part in U and $u v^{H}$
\Rightarrow we can decompose the vector u:

Givens transformations in position 9, 8 and 7 are equal to V. Hence,

$$
\begin{aligned}
H & =U+\mathbf{u v}^{H} \\
& =V W X+\mathbf{u v}^{H} \\
& =V\left(W X+V^{H} \mathbf{u v}^{H}\right) \\
& =V\left(W X+\mathbf{u} \mathbf{v}^{H}\right),
\end{aligned}
$$

where the vector û has only the first three elements different from zero.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

Mase
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Companion matrix

Working with Givens transformations

Representation

Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step
 A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
 Initialization
 The chasing
 The last Givens transformation

Numerical Experiments
 Scaling
 Comparison

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit QR-algorithm with single shift

Outline

Computing the eigenvalues of a companion matrix
Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step
 A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift Initialization

The chasing
The last Givens transformation
Numerical Experiments
Scaling
Comparison
Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Determining the first Givens transformation

The implicit $Q R$-step performed on a Hessenberg matrix is determined by the first Givens transformation G_{1} such that

$$
G_{1}^{H}(H-\mu l) \mathbf{e}_{1}= \pm\left\|(H-\mu /) \mathbf{e}_{1}\right\| \mathbf{e}_{1} .
$$

We will now perform the similarity transformation $G_{1}^{H} H G_{1}$, exploiting the factorization of the matrix H.

$$
\begin{equation*}
H=V\left(W X+\hat{\mathbf{u}} \mathbf{v}^{H}\right) . \tag{3}
\end{equation*}
$$

\Rightarrow a bulge is created. After a complete $Q R$-step is finished:

- bulge is chased away
- we obtain again a Hessenberg matrix
- represented as in (3).

Hence, throughout the entire procedure we want the representation to remain as closely as possible to the original representation of H.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

Mase

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Performing the first similarity transformation

Let us perform the first similarity transformation onto the matrix $H=H_{0}=V_{0}\left(W_{0} X_{0}+\hat{\mathbf{u}}_{0} \mathbf{v}_{0}^{H}\right)$. We obtain

$$
\begin{aligned}
H_{1} & =G_{1}^{H} v_{0}\left(W_{0} X_{0}+\hat{\mathbf{u}}_{0} \mathbf{v}_{0}^{H}\right) G_{1} \\
& =G_{1}^{H} V_{0}\left(W_{0} X_{0} G_{1}+\hat{\mathbf{u}}_{0} \mathbf{v}_{0}^{H} G_{1}\right) \\
& =G_{1}^{H} v_{0}\left(W_{0} X_{0} G_{1}+\hat{\mathbf{u}}_{0} \mathbf{v}_{1}^{H}\right) .
\end{aligned}
$$

Since the Givens transformation G_{1}^{H} acts on the first two rows, and V_{0} acts on the rows 3 up to 6 , they commute and we obtain the following:

$$
\begin{aligned}
H_{1} & =V_{0}\left(G_{1}^{H} W_{0} X_{0} G_{1}+G_{1}^{H} \hat{\mathbf{u}}_{0} \mathbf{v}_{1}^{H}\right) \\
& =V_{0}\left(G_{1}^{H} W_{0} X_{0} G_{1}+\tilde{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right),
\end{aligned}
$$

with $\tilde{\mathbf{u}}_{1}=G_{1}^{H} \mathbf{u}_{0}$, having only the first three elements different from zero.
It seems that the matrix H_{1} is already in the good form, except for the unitary matrix $G_{1}^{H} W_{0} X_{0} G_{1}$. Let us see how to change this matrix.

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van DoorenMase
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift

Initialization

The chasing
The last Givens
transformation

Performing the first similarity transformation

$$
H_{1}=V_{0}\left(G_{1}^{H} W_{0} X_{0} G_{1}+\tilde{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right)
$$

We will start by removing the Givens transformation in position 10. Reordering (moving the Givens from position 5 to position 8) permits the application of the shift through operation.

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

Performing the first similarity transformation

$$
H_{1}=V_{0}\left(G_{1}^{H} W_{0} X_{0} G_{1}+\tilde{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right)
$$

Apply the shift through operation.

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren
problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Performing the first similarity transformation

Rewriting.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations

Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Scaling

Comparison

Performing the first similarity transformation

Apply the shift through operation.

Clearly the undesired Givens transformation moves down, creating a new sequence, starting in positions 10 and 9 and removing the sequence in positions 3 up to 1 .

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations

Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

Performing the first similarity transformation

This corresponds to the following relations:

$$
H_{1}=V_{0}\left(\tilde{W}_{1} \tilde{X}_{1} G_{1}+\tilde{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right)
$$

the unitary matrices \tilde{W}_{1} and \tilde{X}_{1} are two descending sequences of transformations. Let us continue, by trying to remove also the second undesired Givens transformation, the one in position 0.

The problem

Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Performing the first similarity transformation

$$
H_{1}=V_{0}\left(\tilde{W}_{1} \tilde{X}_{1} G_{1}+\tilde{\mathbf{u}}_{1} v_{1}^{H}\right),
$$

One can apply two times the shift through operation to obtain the following scheme.

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

Performing the first similarity transformation

Now there is an unwanted transformation in position 10.
Denote this transformation with \tilde{G}_{1}. In formulas we obtain now:

$$
H_{1}=V_{0}\left(\tilde{G}_{1} \hat{W}_{1} X_{1}+\tilde{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right) .
$$

This gives us the following relations:

$$
\begin{aligned}
H_{1} & =V_{0} \tilde{G}_{1}\left(\hat{W}_{1} X_{1}+\tilde{G}_{1}^{H} \tilde{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right), \\
& =V_{0} \tilde{G}_{1}\left(\hat{W}_{1} X_{1}+\overline{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right),
\end{aligned}
$$

Two terms are of importance here: $V_{0} \tilde{G}_{1}$ and $\tilde{G}_{1}^{H} \tilde{u}_{1}$. Clearly the vector \bar{u}_{1}, will loose one of his zeros. The vector will have now four nonzero elements.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

MaSe
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Performing the first similarity transformation

$$
H_{1}=V_{0} \tilde{G}_{1}\left(\hat{W}_{1} X_{1}+\overline{\mathbf{u}}_{1} v_{1}^{H}\right),
$$

Hence,

$$
H_{1}=\tilde{V}_{1}\left(\hat{W}_{1} X_{1}+\overline{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right) .
$$

Computing the eigenvalues of a companion matrix

Marc Van Barel
Joint work with Raf Vandebril and Paul Van Dooren
problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Performing the first similarity transformation

We are however not yet satisfied. We want to obtain a similar factorization as of the original matrix H . Hence, the four nonzero elements in the vector \bar{u}_{1} need to be transformed into three nonzero elements.
To do so, we need to rewrite

$$
H_{1}=\tilde{V}_{1}\left(\hat{W}_{1} X_{1}+\overline{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right)
$$

Denote the Givens transformation in position 8 , with G^{\prime}, this means $G^{\prime} \hat{W}_{1}^{\prime}=\hat{W}_{1}$, we will drag this Givens transformation out of the brackets on the left. We denote all changed variables with .I to clearly indicate that one extra Givens has moved to the left. Until we will move the Givens back inside the brackets we will indicate this on the affected elements.

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments

Performing the first similarity transformation

$$
\begin{aligned}
H_{1} & =\tilde{v}_{1}\left(\hat{W}_{1} X_{1}+\overline{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right) \\
& =\tilde{V}_{1}\left(G^{\prime} \hat{W}_{1}^{\prime} X_{1}+\bar{u}_{1} \mathbf{v}_{1}^{H}\right) \\
& =\tilde{V}_{1} G^{\prime}\left(\hat{W}_{1}^{\prime} X_{1}+G^{\prime H_{\mathbf{u}}^{1}} \mathbf{v}_{1}^{H}\right) \\
& =\tilde{v}_{1}^{\prime}\left(\hat{W}_{1}^{\prime} X_{1}+\overline{\mathbf{u}}_{1}^{\prime} \mathbf{v}_{1}^{H}\right)
\end{aligned}
$$

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
The vertical line depicts the splitting of the product of the Givens transformations.

Numerical

Experiments

Performing the first similarity transformation

Construct now a Givens transformation acting on row 3 and 4 of the vector \bar{u}_{1}^{\prime} and annihilating the element in position 4. Let us denote this Givens transformation by \hat{G}_{1} such that $\hat{G}_{1}^{H} \overline{\mathbf{u}}_{1}^{\prime}=\hat{\mathbf{u}}_{1}^{\prime}$.

$$
\begin{aligned}
H_{1} & =\tilde{V}_{1}^{\prime}\left(\hat{W}_{1}^{\prime} X_{1}+\hat{G}_{1} \hat{G}_{1}^{H} \overline{\mathbf{u}}_{1}^{\prime} \mathbf{v}_{1}^{H}\right) \\
& =\tilde{V}_{1}^{\prime}\left(\hat{G}_{1} \hat{G}_{1}^{H} \hat{W}_{1}^{\prime} X_{1}+\hat{G}_{1} \hat{\mathbf{u}}_{1}^{\prime} \mathbf{v}_{1}^{H}\right) \\
& =\tilde{V}_{1}^{\prime} \hat{G}_{1}\left(\hat{G}_{1}^{H} \hat{W}_{1}^{\prime} X_{1}+\hat{\mathbf{u}}_{1}^{\prime} \mathbf{v}_{1}^{H}\right)
\end{aligned}
$$

Let us take a closer look now at $\hat{G}_{1}^{H} \hat{W}_{1}^{\prime}$. Applying one fusion, removes the Givens transformation in position 4.

This results in a sequence of Givens transformations denoted as $\hat{G}_{1}^{H} \hat{W}_{1}=W_{1}^{\prime}$.

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van DoorenMase
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations
Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

Performing the first similarity transformation

$$
H_{1}=\tilde{V}_{1}^{\prime} \hat{G}_{1}\left(W_{1}^{\prime} X_{1}+\hat{\mathbf{u}}_{1}^{\prime} \mathbf{v}_{1}^{H}\right)
$$

The matrix product $\tilde{V}_{1} \hat{G}_{1}$ is of the following form. Applying the shift through lemma gives us the following figure.

This scheme can be written as $G_{2} V_{1}^{\prime}$, in which V_{1}^{\prime} incorporates the Givens from position 1 to 4 and G_{2} is shown in the fifth position. This Givens transformation G_{2} will determine the next chasing step. First we need however to bring the Givens transformation in position 1 again inside the brackets.

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Performing the first similarity transformation

Plugging all of this into the equations above gives us:

$$
H_{1}=G_{2} V_{1}^{\prime}\left(W_{1}^{\prime} X_{1}+\hat{\mathbf{u}}_{1}^{\prime} \mathbf{v}_{1}^{H}\right) .
$$

Rewriting now the formula above by bringing the Givens transformation \tilde{G}_{1}^{\prime} in position 1 of the matrix V_{1}^{\prime} inside the brackets does not change the formulas significantly. We obtain:

$$
H_{1}=G_{2} V_{1}\left(W_{1} X_{1}+\hat{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right)
$$

with $V_{1}=V_{1}^{\prime} \tilde{G}_{1}^{H}, W_{1}=\tilde{G}_{1} W_{1}^{\prime}, \hat{\mathbf{u}}_{1}=\tilde{G}_{1} \hat{\mathbf{u}}_{1}^{\prime}$.
The matrix H_{1} is almost in Hessenberg form, except for a bulge in position (2,1).
The representation is also almost in the correct form, only the Givens transformation G_{2} is undesired.
We will remove this transformation (removing thereby also the bulge in H_{1}), by applying another similarity transformation with G_{2}.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

Mase
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments

Outline

Computing the eigenvalues of a companion matrix
Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step
 A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift

Initialization

The chasing
The last Givens transformation
Numerical Experiments
Scaling
Comparison

Unitary plus rank one matrices
Structure under a $Q R$-step A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift Initialization
The chasing
The last Givens
transformation
Numerical
Experiments

Chasing

Since we want our matrix H to become again of unitary plus low rank form obeing the designed representation, we want to remove the disturbance G_{2}. Performing the unitary similarity transformation with this Givens transformation removes the transformation in the left, but creates an extra transformation on the right. We obtain the following:

$$
\begin{aligned}
H_{2} & =G_{2}^{H} H_{1} G_{2} \\
& =G_{2}^{H} G_{2} v_{1}\left(W_{1} X_{1}+\hat{\mathbf{u}}_{1} \mathbf{v}_{1}^{H}\right) G_{2} \\
& =V_{1}\left(W_{1} X_{1} G_{2}+\hat{\mathbf{u}}_{1} \mathbf{v}_{1}^{H} G_{2}\right) \\
& =V_{1}\left(W_{1} X_{1} G_{2}+\hat{\mathbf{u}}_{1} \mathbf{v}_{2}^{H}\right),
\end{aligned}
$$

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift

Initialization

The chasing

The last Givens transformation

Numerical

Experiments

Chasing

This gives us

$$
\begin{aligned}
H_{2} & =V_{1}\left(W_{1} X_{1} G_{2}+\hat{\mathbf{u}}_{1} \mathbf{v}_{2}^{H}\right) \\
& =V_{1}\left(\tilde{G}_{2} W_{2} X_{2}+\hat{\mathbf{u}}_{1} \mathbf{v}_{2}^{H}\right) \\
& =V_{1} \tilde{G}_{2}\left(W_{2} X_{2}+\tilde{G}_{2}^{H} \hat{\mathbf{u}}_{1} \mathbf{v}_{2}^{H}\right) .
\end{aligned}
$$

Since the Givens transformation \tilde{G}_{2}^{H} acts on row 4 and row 5, $\tilde{G}_{2}^{H} \hat{\mathrm{u}}_{1}=\hat{\mathrm{u}}_{1}$ ($\hat{\mathrm{u}}_{1}$ has only the first three elements different from zero). Applying a final shift through operation for $V_{1} \tilde{G}_{2}$ we obtain $G_{3} V_{2}=V_{1} \tilde{G}_{2}$ giving us (with $\hat{u}_{2}=\hat{u}_{1}$):

$$
H_{2}=G_{3} V_{2}\left(W_{2} X_{2}+\hat{\mathbf{u}}_{2} \mathbf{v}_{2}^{H}\right)
$$

We have performed now a step of the chasing method since the Givens transformation G_{3} has shifted down one position w.r.t. the Givens transformation G_{2}.

The chasing procedure can be continued in a straightforward manner.
Unfortunately this approach does not allow us to determine the last Givens transformation G_{n-1}.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren
mase

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations
Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift

Initialization

The chasing
The last Givens transformation

Numerical

Experiments
Scaling
Comparison

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices
 Structure under a $Q R$-step
 A representation for the unitary matrix
 Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift

Initialization
The chasing
The last Givens transformation
Numerical Experiments
Scaling
Comparison

Numerical

Last Givens transformation

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van Dooren$$
H_{n-3}=G_{n-2} V_{n-3}\left(W_{n-3} X_{n-3}+\hat{\mathbf{u}}_{n-3} \mathbf{v}_{n-3}^{H}\right) .
$$

Performing the similarity transformation determined by G_{n-2} results in

$$
\begin{aligned}
H_{n-2} & =V_{n-3}\left(W_{n-3} X_{n-3} G_{n-2}+\hat{\mathbf{u}}_{n-3} \mathbf{v}_{n-3}^{H} G_{n-2}\right) \\
& =V_{n-3}\left(W_{n-3} X_{n-3} G_{n-2}+\hat{\mathbf{u}}_{n-2} \mathbf{v}_{n-2}^{H}\right)
\end{aligned}
$$

The Givens transformation G_{n-2} works on rows $n-2$ and
$n-1$.
Suppose we have performed step $n-3$ and we have the following situation:

Last Givens transformation

$$
H_{n-2}=V_{n-3}\left(W_{n-3} X_{n-3} G_{n-2}+\hat{\mathbf{u}}_{n-2} \mathbf{v}_{n-2}^{H}\right) .
$$

Applying once the shift through operation.

Unfortunately we cannot shift the Givens transformation through anymore, a single fusion can be applied:

$$
H_{n-2}=V_{n-2}\left(W_{n-2} X_{n-2}+\hat{\mathbf{u}}_{n-2} \mathbf{v}_{n-2}^{H}\right) .
$$

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

Explicit determination of last Givens

$$
H_{n-2}=V_{n-2}\left(W_{n-2} X_{n-2}+\hat{\mathbf{u}}_{n-2} \mathbf{v}_{n-2}^{H}\right) .
$$

The representation is of the desired form, but it represents a Hessenberg matrix with an extra bulge in position ($n, n-1$).
This final Givens transformation can hence not be determined implicitly anymore. We determine this Givens transformation explicitly by computing the matrix vector product $H_{n-2} \mathbf{e}_{n-1}$, determine now G_{n-1} such that $\mathbf{e}_{n}^{H} G_{n-1}^{H} H_{n-2} \mathbf{e}_{n-1}=0$.
The final similarity transformation results in:

$$
H_{n-1}=G_{n-1}^{H} V_{n-2}\left(W_{n-2} X_{n-2} G_{n-1}+\hat{\mathbf{u}}_{n-2} \mathbf{v}_{n-2}^{H} G_{n-1}\right) .
$$

Applying a fusion for the product $G_{n-1}^{H} V_{n-2}$ and a fusion for the product $X_{n-2} G_{n-1}$ results in

$$
H_{n-1}=V_{n-1}\left(W_{n-1} X_{n-1}+\hat{\mathbf{u}}_{n-1} \mathbf{v}_{n-1}^{H}\right),
$$

which is a new Hessenberg matrix, i.e., a sum of a unitary and a rank one matrix, represented using the desired representation.

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift

Initialization

The chasing
The last Givens
transformation

Numerical

Experiments

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments
 Scaling
 Comparison

Numerical

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van

Dooren

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments

Scaling
Comparison
MaSe

The problem

Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical
 Experiments

Scaling / balancing

- For a general square matrix A one can use a diagonal similarity transformation

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}\left(\lambda I-D A D^{-1}\right)
$$

with D a suitable diagonal matrix. In general this will destroy the unitary plus rank one structure of the companion matrix C_{p}.

- The zeros of the monic polynomial $p(z)$ are α times the zeros of the monic polynomial $\tilde{p}(\tilde{z})=\frac{p(\alpha \tilde{z})}{\alpha^{n}}$, i.e.,

$$
\operatorname{det}\left(\lambda I-C_{p}\right)=\operatorname{det}\left(\lambda I-D C_{p} D^{-1}\right)=\operatorname{det}\left(\lambda I-\alpha C_{\tilde{p}}\right)
$$

with $D=\operatorname{diag}\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)$.

- The choice of a good value for the scaling parameter α is very important.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

Mase

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Outline

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

Working with Givens transformations Representation Fusion and shift-through operations

Unitary plus rank one matrices

Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical Experiments

Scaling
Comparison
Numerical
Experiments

Different methods

D. Bindel, S. Chandrasekaran, J. W. Demmel, D. Garmire, and M. Gu.

A fast and stable nonsymmetric eigensolver for certain structured matrices.
Technical report, Department of Computer Science, University of California, Berkeley, California, USA, May 2005.
D. A. Bini, F. Daddi, and L. Gemignani.

On the shifted $Q R$ iteration applied to companion matrices.
Electronic Transactions on Numerical Analysis, 18:137-152, 2004.
D. A. Bini, Y. Eidelman, L. Gemignani, and I. C. Gohberg.

Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices.
SIAM Journal on Matrix Analysis and Applications, 29(2):566-585, 2007.
D. A. Bini, L. Gemignani, and V. Y. Pan.

Fast and stable $Q R$ eigenvalue algorithms for generalized companion matrices and secular equations.
Numerische Mathematik, 100(3):373-408, 2005.
S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu.

A fast QR algorithm for companion matrices.
Operator Theory: Advances and Applications, 179:111-143, 2007.
S. Delvaux, K. Frederix, and M. Van Barel.

An algorithm for computing the eigenvalues of block companion matrices.
Technical report, Department of Computer Science, Katholieke Universiteit Leuven, 2008.

In preparation.

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations

Representation

Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens transformation

Numerical

Experiments

Methods considered

- method eig from Matlab
- method eig-nobalancing from Matlab
- method Bini et al.: compqr.m (website of Gemignani)
- method Delvaux et al.
- method talk but implemented with double shift (real arithmetic)

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Criteria

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

- maximum relative backward error on the coefficients of the corresponding polynomial

$$
\max _{i} \frac{\left|\tilde{p}_{i}-p_{i}\right|}{\left|p_{i}\right|}
$$

where the coefficients are computed in high precision based on the zeros

- average number of iterations per eigenvalue
- check the $O\left(n^{2}\right)$ complexity

Results: computational complexity

polynomials with coefficients uniformly random from [1,2] degrees: 25,50, 100,200,400

Figure: T_{k} / T_{k-1} with T_{k} the execution time for size $n=25 * 2^{k}(5$ samples)

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van DoorenMaSe
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Results: iterations / eigenvalue

Figure: average number of iterations per eigenvalue (5 samples)
Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical
 Experiments

Scaling
Comparison

Results: relative backward error

Figure: average number of maximum relative backward error on the coefficients (5 samples)

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

MaSe

The problem
Companion matrix
Working with Givens transformations

Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the unitary plus rank one matrix

Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Results: relative backward error

coefficients are the same as before except their sign is randomly chosen

Figure: average number of maximum relative backward error on the coefficients (5 samples)

Computing the eigenvalues of a companion matrix

Marc Van Barel

 Joint work with Raf Vandebril and Paul Van DoorenMaSe

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

Results: influence of scaling

Polynomials of degree $n=20$:

1. Wilkinson polynomial with roots: k with $k=1, \ldots, n$.
2. Monic polynomial with roots: $[-2.1: 0.2: 1.7]$.
3. Monic polynomial with roots: 2^{k} with $k=-10, \ldots, 9$.
4. Scaled Wilkinson polynomial with roots: $\frac{k}{n}$ with $k=1, \ldots, n$.
5. Reversed Wilkinson polynomial with roots: $\frac{1}{k}$ with $k=1, \ldots, n$.
6. Polynomial with well separated roots: $\frac{1}{2^{k}}$ with $k=1, \ldots, n$.
7. Polynomial $p(z)=(20!) \sum_{k=0}^{20} \frac{z^{k}}{k!}$.
8. Polynomial $p(z)=z^{20}+z^{19}+\cdots+z+1$.

Computing the eigenvalues of a companion matrix

Marc Van Barel Joint work with Raf Vandebril and Paul Van Dooren

Mase
The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one

 matricesStructure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Results: relative backward error

Figure: maximum relative backward error on the coefficients (for the optimal choice of the scaling parameter α); the scaling parameter is chosen as a power of 2

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren

The problem
Companion matrix
Working with Givens transformations
Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation

Numerical

Experiments
Scaling
Comparison

Results: relative backward error, influence of scaling

Figure: maximum relative backward error on the coefficients (for different choices of the scaling parameter α)

Computing the eigenvalues of a companion matrix

Marc Van Barel

Joint work with Raf Vandebril and Paul Van Dooren
mase

The problem
Companion matrix
Working with Givens transformations

Representation
Fusion and shift-through operations

Unitary plus rank one matrices
Structure under a $Q R$-step
A representation for the unitary matrix
Representation of the
unitary plus rank one matrix
Implicit $Q R$-algorithm with single shift
Initialization
The chasing
The last Givens
transformation
Numerical
Experiments
Scaling
Comparison

