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OVERVIEW OF THE TALK

e Huge-scale data calls for sublinear complexity
e Tensor background

— Tucker decomposition

— Canonical decomposition

e (General rank reduction methods

— Tensor SVD (Higher Order SVD)
— Alternating Least Squares (ALS)

e Recompression methods in matrix-by-matrix multiplication

— Pre-recompression stage

— Tucker-Tucker recompression algorithms
e Matrix inversion with sublinear complexity

— Newton—Schultz and its modification

— General theory for approximate iterations

— Examples: 3D Laplacian and Newton potential
— Inversion of a two-level Toeplitz matrix

— Tensor eigensolver perspectives

e Concluding remarks and future work



WHAT IS A HUGE-SCALE PROBLEM?

Solve
e(y)dy = f(z), =x,y€ D=][0,1]"

1
|z —
D

Let d = 3. Subdive the cube D into subcubes D)
Dy = [ai—1,a;]X|aj—1,aj]X[ar—1,ak], 0 =ap < a1 <..<a,=1

go(y) N Uik = const Ha Dz’jk (COHOC&tiOD) = Au = f

Vectors — discrete functions w;jx, fijx on a grid with n3 nodes.
Matrix A contains n® nonzero entries, none of them can be neglected,
no visible structure in the case of nonuniform grids.

n = 64 = STORAGE FOR A = 512Gb — not few!
n = 256 = STORAGE FOR A = 2Pb (1 Pb = 250 byte).

A big problem is already with storage for matrix coefficients!



CAN WE STILL SOLVE IT?

The only idea is to find a sufficiently close problem
with a flaunting low-parametric structure.

Store only few parameters of this structure.

Apply gain-of-the-structure methods.

USE SMOOTHNESS IN DATA!

SMOOTHNESS = RANK STRUCTURES =
TENSOR STRUCTURES



WHAT IS A TENSOR PROBLEM?

[t is one where all data on input and output are given exactly or approximately
in tensor formats defined by a small number of parameters compared to the
total amount of data.

For such problems we propose to seek for algorithms that work with data
exclusively in tensor formats, the price we pay is a contamination of data
through recompression (approximation) at each operation.



WHAT ARE TENSORS?

TENSOR = MULTI-INDEX ARRAY = MULTI-WAY ARRAY =
MULTI-DIMENSIONAL MATRIX:

A = [aij.. k]

icI, j€J, .., keK

Number of different indices is dimension.

Indices are called also modes.

Cardinalities of index ranges I, J, ..., K are mode sizes.
In case of dimension d and mode sizes 121, 122, «.cy Ty,

A is a tensor of size 1 X Mg X ... X Ng.

Talking of tensors, tacitly assume that d > 3.



TENSORS AND MATRICES

Let A — [aijklm]-
Consider pairs of complementary long indices

(i) and (Kklm)
(k) and (ijm)

Then A gives rise to several matrices:
By = [b(ij),(kim) )
By = [buay, (ijm)]

with
b(ij),(kim) = bwi),(ijm) = -+ = Qijkim



MODE UNFOLDING MATRICES

Ay = [a; (jrim).
Az = [a; (ikim).
A3z = |ag,(ijim)]
Ay = |ay,(ijkm).
As = [@m,(ijki)]

Columns of unfolding matrices are called mode vectors.
If d = 3, typical names are columns, rows, fibers.

Ranks of unfolding matrices are called mode ranks or Tucker ranks.

L. R. Tucker, Some mathematical notes on three-mode factor analysis,
Psychometrika, V. 31, P. 279-311 (1966).



TENSOR-BY-MATRIX MULTIPLICATIONS
Also called mode contractions.

Given a tensor A = [a;;x] and matrices
U=lup], V=Ivj, W =ww,
define new tensors
AY = A x U = [agjk]
AV = A X,V = [a,};,k]
AV = A xs W = [afyk,]

as follows:

a’gjk — g Wit Qijk <~ AU UA,
7
| Z— E e (1 V _

J
aiﬂjfk/ = E W'k A5k <= AW W Aj



WHY CONTRACTIONS?

Let A = [a;jr] be n X m X n and mode ranks be equal to r <K n.
Consider QR decompositions of unfolding matrices

A= QiRy, Ax; =Q2R;, A3 = Q3R
Q1, Q2, Q3 are orthogonal n X r matrices.

Define the Tucker core tensor G = [gap~]
of contracted size r X r X 7:

T T T
G=AX1Q, X2Q, X3Q; ie gogy = Zaz‘jk Qi Ts Ty

1,9,k
THEOREM
A = G X1Q1X2Q2X3Q3 ie a;p = Z Jasy qz'la qj2',3 qify
o8,y

IMPORTANT: A is now represented in a contracted form
with only 3nr + r3 < n3 parameters.



TUCKER DECOMPOSITION

Regarded as Tensor SVD or Higher Order SVD:

A = G X1Q1 X2Q2X3Q3 le a;r = Z dapy qz'la qj2',3 qify
o,y

Orthogonal matrices Q1, Q2, Q3 are Tucker factors or frame matrices.

THEOREM

Rows in each of unfolding matrices for the Tucker core can be
made orthogonal and arranged in length-decreasing order.
Row lengths of unfoldings for G = singular values of unfoldings for A.

PROOF is easy via SVD of unfolding matrices:
if A1 = le]l‘/l then (A X1 QI)l = > V;.

Same for other modes.



TUCKER APPROXIMATIONS

~ 1 2 3
Ajjr ~ Z Japy i 43 i~
o, B,

APPLICATIONS:

e Multi-way Principal Component Analysis
(senior frame matrices are most informative).

e Tensor data compression
(ignore small and get to reduced Tucker ranks < mode sizes).

e New generation of numerical algorithms
with all data in the Tucker format.
Enjoy linear and even sublinear complexity in total size of data
(could be petabytes).

[. Oseledets, D. Savostyanov, E. Tyrtyshnikov,
Linear algbera for tensor problems, submitted to Computing (2008).

G. Beylkin, M. Mohlenkamp, Algorithms for numerical analysis in
high dimensions, SIAM J. Sci. Comput., 26 (6), pp. 2133-2159 (2005).



CANONICAL DECOMPOSITION

p

Qij...k — E Wit Vjteor Wit
t=1

Minimal p = tRank is called canonical rank or tensor rank of A.

THEOREM
Let mode ranks be egual to . Then

r < tRank(A) < 72

CANONICAL APPROXIMATIONS
p
Aij..k ~ Z Uit Vjgeoo Wit
t=1

play same compression role as Tucker.
Could be better but not necessarily!



TENSOR RANKS IN COMPLEXITY THEORY

In the “row-by-column” rule for multiplication of n X m matrices
we have n? multiplications. Can we reduce this number?

Ci1 C2|  |a1 Q2| b1 b2
C3 C4 o a3z ay4 o bs by

Cr = Zzh”k a; bj

i=1 j=1
Let p = tensor rank of h;;, and canonical decomposition read
P J p

p
hijr = E Uit Vjt Wit =
t—1

P 4 n
Cr = E Wit E Uit E vtb;
t=1 i=1 j=1

Now we have p multiplications!

[f n = 2 then p = 7 (Strassen, 1965).
By recursion = only O(n!'°827) multiplications for arbitrary n.



TUCKER VS CANONICAL FOR MATRICES

T

aij =) Y GaplinGis & A=Q:1GQ,

a=1 3=1

Tucker = a pseudo-skeleton decomposition of A.

p
a;; = Zuitvjt &S A= UVT

t=1

Canonical = a skeleton or dyadic decomposition of A.

Tensor (canonical) rank seems to be a true generalization
of the matrix rank concept.

However, tensor rank for dimension > 3 and matrix rank
have noticably different properties.



KRONECKER PRODUCT REPRESENTATION

Tucker decomposition:

A= Zgamua@) v Q@ wy

a,B,y

Canonical decomposition:

A:Z urQ v Q wy
t



BASIC OPERATION

Given two matrices A and X, compute a tensor-structured approximation Y
to thewr product

~

Y=~Y=AX

so that'Y never appears as a full matrix.

Assume that A i1s N X N.

Important cases for X:
(a) X is a vector (a rectangular matrix of size N X 1);

(b) X is a square matrix of the same order IN.

Case (a) is a basic operation in all iterative solvers
for linear systems or eigenvalue problems with the coefficient matrix A.

Case (b) is a workhorse operation in computation of matrix functions of A,
in particular A=,



CANONICAL FORMAT

P
A:ZAt(X)Bt@Ct

t=1

p
X:ZU’T®VT®WT

=1

TUCKER FORMAT

A= S‘S‘S‘faafA ® Bs ® C.

o=1 =1 1=1

X = S‘S‘YgamUa@Vg@Wv

a=1 g=1~v=1

Thus, N = nins...ny.

Proceed asifd =3, n=ny=..=ng, =1

e — Tq.



COMBINATIONS OF FORMATS

(CC) A and X are both in the canonical.

(CT) A is in the canonical, X is in the Tucker.

(TT) A and X are both in the Tucker.

~

Theresult Y =Y = AX is assumed to keep the format of X.

We focuse only on CT" and T'T'.



PRE-RECOMPRESSION STAGE

A:ZfaéTAa® Bs ® C-

0,0,T

X=> gapy Ua® V3@ W,

.3,y

= Y = Z Z faér Japs~y AaUa 04 B(SVB X CTW")’

0-7577- aw@ﬂ/

Pre-recompression stage consists in the computation of matrices

Al =A,Us, Bj;=BsVs, C. =C,W,.

T

Consequently,
V=305 futr g A ® By ® Chy

0-7577- a7137’7



GENERAL RANK REDUCTION METHODS
Consider a general tensor Z = [z;;] with the mode sizes n.
Tensor SVD (Higher Order SVD):

e Construct the unfolding matrices Z7 = [2; ()], Z2 = [2j,i0)]s  Z3 = [2k,j))-
e Perform rank revealing decompositions (via SVD)
Zy = QR+ E1, Z>=Q:R;+ E», Z3=Q3R;+ Ej,

where
Qi =[g;,), Q2=I[d}4, Qs=lq;,)

are orthogonal m X r matrices.

e Compute the Tucker core tensor

_ 1 2 3
haﬁ7 — Z Qi i3 i~ =ijk-
1,5,k

e Finish with the Tucker approximation in the form

Yijk = Yijk = Z hagy q;,, q32-5 CI;?:W-
afy

COMPLEXITY = O(n?)



GENERAL RANK REDUCTION METHODS
Alternating Least Squares (ALS):

e Freeze Q2, Q3 and compute

1 _ 2 3
higy = D _ @i Giy Ziik-
3.k
Consider a matrix Hy = [h;g. ] of size n X 72 (here B3, form a “long index” for columns)

and find @ from a rank revealing decomposition
H, = Q1R + F;

with minimal ||Fy||r. Note that @y is a maximizer for ||Q T Hy||r over all matrices Q
with 7 orthonormal columns.

e Freeze Q1, Q3 and find the best fit Q5.
e Freeze Q1, Q2 and find the best fit Q3.

e Repeat until convergence, then compute the Tucker core for the obtained mode frame
matrices.

COMPLEXITY = O(n’r + n?r? + nr?)



GENERAL RECOMPRESSION ALGORITHM

Given z;jr = Za,ﬁﬂ hagy @i bjg cry with the mode sizes n and mode
ranks rg, find its approximation of lesser rank with r» < 7.

e Compute orthogonal n X r¢ matrices Q1 = [qila,], Q2 = [Q?ﬁr]’ Qs = [qiv,] s.t
laia] = Q1 Ry, [bjﬂ] = Q2R», [Ck'y] = Q3Rs.

e ['ind an auxiliary 19 X r¢ X 7 tensor h’ oG = Z fra ‘o [23,5 '?;7 hagy via 3 steps:
o0,y
_ 2
horgy = Z Tara Pasy: By = Z g Mgy Porgiy Z Ty Ratryy

B

T

r r
e Reduce its mode ranks: h/ PV yj yj yj p(lx,a p%, 5 pf”y,Thm;T.

o=1 =1 1=1

e Finally, z;r = Y Y y: 35 qh_ h,s- with the Tucker factors

o=16=11=1

To To To
~ 1 .1 5 2 2 ~3 2 3
;e = E : 9;o'Poros  dj5 = E : d;3Pgss djr = E : iyt Pryrre
a’=1 v'=1

B'=1

COMPLEXITY = O(nr2 4+ nror +rj) (possibly 73 instead of rg)



TUCKER-TUCKER RECOMPRESSION ALGORITHM

e Find orthogonal m X r? matrices Q1 = [q,il,(a,a,)], = [q; wanly Qs =
s.t.

[ai,(aa)] — QlRla [bj,(éﬁ)] — Q2R23 [Ck:,(T'y)] — Q3R3-

e Define the auxiliary core tensor by

1 2
h’o"a’(i’ﬁ’ It = E E T ool oo 'r(s/l@/(;lg 7"77"7 f0'57' Jdop~y
0-,671- a’IB,’Y

and compute it through the following prescriptions:

’ — 2 : 2
h’a”a’é,BT'y _ Tolaloo f0'57' 9apys
" _ ’
hsgiry = E :Té’ﬁ’éﬁ Rorarspry:

. 2 : "
ha”a’é’ﬁ’T"}/’ = 7"7_,7 v ha’a’é’ﬁ’rw

e Apply a mode rank reduction algorithm to the auxiliary tensor.

[qk (7 7’)]

e Recompute the Tucker factors in the final Tucker approximation with mode ranks r.

COMPLEXITY = O(nr* + r®) MEMORY = O(nr? + r°)



TUCKER-TUCKER ALS RECOMPRESSION ALGORITHM

e Freeze Q2, Q3 and find the best fit for Q1: compute
Va6 — Z qj2'5l bjogs Weyiry = Z q,?;,y/ Ckrs
j k

then acquire

hiﬁ"y’ — Z Z .f0'57' Japy V363 Wrlr~y Qiga
0-76?7- a’ﬁ”y
via the following prescriptions:

/ n

ua,@*y’T — 2 :ga,ny Wo/ 79 ua,@’y’aé — 2 :uaﬂ'y"r fa'67'7

-~
4
Uayad = D Ungygs V96ps higy = D Uayep Giga-
5,/6 o,

Obtain @ from a rank revealing decomposition of the matrix Hy = [h; (g41)] of size
n x r2.

e Similarly, freeze @1, Q3 and find the best fit for @2, then freeze @1, Q2 and find the
best fit for Q3.

e Repeat until convergence.

COMPLEXITY = O(nr* 4+ r%, MEMORY = O(nr?+ r®).



BEWARE OF A POSSIBLE PITFALL

One may want to circumvent the computation of a full 7% X r? X 72 core and
try to compress first the factor matrices via SVD (instead of QR).

This may not work!

EXAMPLE:

CT

A=UV' = (a %) (e—ldT

) = ac' - ebd'

a, b, c, d are unit-length vectors of size n and (a,b) = (¢, d) = 0

If we “compress” U and V separately, then the senior singular vectors of U

and V would be a and d. Hence,
A =~ ~vad',

which leaves us with no hope.

Thus, we have to compute the full core and treat all the factors simultaneously,.
not separately.



MATRIX INVERSION ALGORITHMS

Newton-Schultz method
Xpr1 = 2X5 — XpAXy, k=0,1,..
converges quadratically (in exact arithmetics) if ||I — AXp|| < 1.

Let A be given in the Tucker format and the same structure be maintained for
all iterates Xg:

Zi1 = 22X — XpAXy, Xpp1 = P(Zit).

P is a (nonlinear) projector onto the manifold of matrices in the Tucker format
with mode ranks 71, 72, 73 selected and fixed before the method starts.

Truncated iteration converge still quadratically if
P(A)=A""+E, ||[E[|<e
until || X, — A7 > ce for some ¢ > 1.



GENERAL THEORY OF APPROXIMATE ITERATIONS

V a normed space

B € V the target of computaion
ITERATIVE PROCESS: Xj = ®p(Xg_1)

LEMMA.
Assume d a > 1, €, cp s.t.

| X —B||<ee =

|®x(X) — Bl| < csl|X — BJ|*.

Then
| Xo— Bl|l<e =

k
I Xk — B|| < ¢ (c||Xo—=B|[)*, k=1,2..

€ = min (eq,, c_l) , C = Cg



S C V asubset of “structured” elements (e.g. structured matrices)

R : V — S a truncation operator.
XeS = RX)=X

TRUNCATED ITERATIVE PROCESS:

Yo = R(Xo)
Y = R(®r(Yi-1))



THEOREM 1.

Assume that

(1) Premises of Lemma are fulfilled.
(2) R(B) = B.
3)[|IX =Bl <es = || X - R(X)|| <crl||X — B

Then 34 6 > 0s.t.
Yo = R(Ys), |[Yo—B|[<dé =
Yy — B|| < cgrs ||Yeo1 — B||¢, k=1, 2, ...
cre = (cr+ 1)cs

W. Hackbusch, B.N. Khoromskij, E. Tyrtyshnikov. Approzimate iteration for struc-
tured matrices. Preprint no. 112, Max-Planck-Institut fiir Mathematik in den Natur-
wissenschaften, Leipzig 2005. Numer. Math., DOI 10.1007/s00211-008-0143-0, 2008.



THEOREM 2.
Assume d €¢, Cr, ErB st
| X —B||<es =
| X — R(X)|| < crl||X — B|| + ers-

Let ™ be the minimal k s.t.
€RB

eg_l < — CR® — (CR + 1)C¢>-
CR®
Then errors e, = ||Yi— BY|| of trun. iter. decrease superlinearly until k < m:
E<m-—-1 = e, < 2crae,_q,

k>m = e, < 2egrB.

[1¥e — Bl < |[Ye— Zi[| +1|Zk — B|| < (er+1)[|Zk— Bl||+erp =

(8% (8
er. < Croe€, +€rB < 2Croe; -



MODIFIED NEWTON-SCHULTZ

Xk_|_1 = Xk(ZI — AXk) = Xk(ZI — 1/]@) with Y, = AXg —

Yiir = Ye(2I — Yy), X1 = Xi(2I —Yy)
X is an initial guess for A™!, Yy = AX,.

TRUNCATED VERSION:

H, =PI -Yi), Yy =Pi(YiHy), Xpp1 = Po(XiHy)

Projectors Pi, P2 ought to maintain the required accuracy and P can be a
way less accurate.

I[f Xo is close enough to A™! then Y) and Hj, are close to I, a “perfect
structure” matrix. Experiments confirm that the modified Newton method is
faster and more accurate than the standard Newton method.



INVERSION OF A 3D LAPLACIAN

A

AN

N = n?

323

643

tridiag(—1,2, —1)

1283

AQRQIRI + IQARITI + IRIRA

2563

Time

9 sec

11 sec

24 sec

227 sec

|AX — I[|r/|T]|F

3.1076

4.1076

2.107°

For the Laplacian, projectors are chosen as follows:
P1 = P2 = P(12,12,12)-

P(r1r2r3) is a projector onto tensors with mode ranks rq, ra, 73.

P = P(2,2,2)5

104



INVERSION OF A NEWTON-POTENTIAL MATRIX

Mode ranks for the Newton potential matrix, € = 107°

N = n?|32%|64%|128%|256°
r |10 12| 13 | 15

Timings for the Newton potential matrix

N =n? 323 643 1283 2563
Time 60 sec| 107 sec | 360 sec | 1574 sec
|AX — I||r/||I||lF| 1072 9-107°|5.-10"%|4-10"2

For the Newton potential matrix, to cause the method to converge we had to
select

P = P1 = P2 = P(0,10,10)-



SUBLINEAR COMPLEXITY FOR 2D TOEPLITZ INVERSION

Consider a 5-point Laplacian of order N = n? (2-level Toeplitz matrix).
The inverse matrix is approximated by the Newton—Schultz method

X1 = APPROXIMATION(2X; — X AX})

with a rank-structured approxination of all computed matrices: by matrices of
limited tensor rank and limited displacement rank of each block.

n 642 | 1282% 2562 | 5122
Tensor rank A1 9 10 11 12
Averaged displacement rank of A~!|/13.5/13.5|/16.8|18.6

Inversion of the 5-point Laplacian

Time behaves as O(vV N7r2 ),

mean
Tmean — averaged displacement rank.

V.Olshevsky, I.Oseledets, E.Tyrtyshnikov,

Superfast inversion of two-level Toeplitz matrices using Newton iteration and tensor-displacement

structure, Operator Theory Advances and Applications, vol. 179, pp. 229-240 (2007).




Low-parametric representations of inverse matrices
contain o(IN) parameters.

Hence, all difficulties are relegated to the representation of

vectors, not matrices!



TENSOR STRUCTURE IN VECTORS

8
|
© 00U W N

X = MATRIX(x)

N =

111]+

|
LoD =
NG N
© 00

& & = VECTOR(X)

[O 1 2] = ulvlT + usv

r=7v QUi+ v2 K us

T
2



EIGENVECTOR STRUCTURE
M=AQQB+CX®D

If A, C and B, D are two pairs of commuting matrices,
then any eigenvector has a tensor rank-1 structure.

DISCRETE LAPLACIAN CASE
Mu=Au, M=AQI+IRA

2 —1
-1 2 -1
A = e e ee
-1 2 -1
ke I ks . wlt
T = U Qv uk_smn+1, ’vi—smn+1
0 7Tl
)\kl:4sm <k,l<n




USE TENSOR VECTORS IN EIGENSOLVERS

LANCZOS:
e Choose an initial vector p; with ||p1|| = 1 and set pg = 0, bg = 0.
e For Kk = 1,2,... compute
zr, = Mpy
ar = (zktapk:)
qQx = 2 — akPr — br_1Pr—1

b = ||qxl|
Pk+1 = qi/ bk

e Compute the Rietz values as the eigenvalues of a projection k X k matrix
(a symmetric tridiagonal matrix consisting of the values ag, by)

My = P/ MP,, P,=[pi,-.-, Dk



TENSOR LANCZOS

e Choose an initial vector p; with ||p1|| = 1 and set pg = 0, bg = 0.

e For Kk = 1,2,... compute

zr, = Mpy
ap — (Zk’ pk)

qx = T-(zx — axpPr — br—1PK—1)

b = ||qx|
Pk+1 = qi/bg

e Compute the Rietz values using k X k projection matrices.

STANDARD VERSUS TENSOR (50 iterations)

n 1000 | 2000 | 4000 | 6000
Lanczos time (sec) 2.8 | 12.1]76.7|224.9
Tensor Lanczos time (sec)| 04 | 0.7 | 1.5 | 2.2

For n = 6000 we observe a 100 times acceleration.




MORE EXAMPLES

Jo)
MT:M—ZDt@)Dt

M = —Laplacian.

Compare maximal eigenvalues on the 50th iteration.

t=1

n = 300%, truncation rank = 10, ¢ = 1072,

p

1

3

5

D, are diagonal matrices with positive entries.

Standard Lanczos

7.989

7.957

7.925

7.900

7.893

Tensor Lanczos

977

7.940

7917

Entries of Dy are uniform grid values of (1 4+ T3(x)) /10,
T; is the Chebyshev polynomial of degree t.

P

1

3

5

7.893

7

7.906

9

Standard Lanczos

7.862

7.615

7.302

6.800

6.460

Tensor Lanczos

7.852

7.608

7.292

6.789

6.452

Entries of Dy come from random vectors with uniform distribution on [0, 1].



SUBLINEAR COMPLEXITY

For 2-dimensional problems time grows
as SQUARE ROOT

of total number of nodes!

For d-dimensional problems time should grow
as ROOT OF DEGREE d

of total number of nodes!



FUTURE RESEARCH

e Additional structure for matrix factors (wavelet sparsification, Toeplitz-like
structure, circulant-plus-low rank structure).

e [terative methods for matrix functions (sign functions, square root, matrix
exponential).

e [terative methods for linear systems with structured vectors (PCG,BiCGStab)
and preconditioners computed by the Newton method.

e Lligenvalue solvers with tensor-structured eigenvectors.



FUTURE RESEARCH
A challenge topic for the linear algebra and matrix analysis community:

Which properties of matrices do account for a Tucker approximation with low
mode ranks for the inverses, matriz exponentials and other matriz functions?

All experiments are in favour of the following hypothesis: for all practical op-
erators of mathematical physics (differential operators, integral operators with
smooth, singular and hypersingular kernels) on tensor grids, standard matrix
functions can be approximated in the Tucker format with ranks of order

r ~ log®nlogfe 1,

with some constants a, 3. The known theorems on tensor structure of the
matrix functions rely on analytical considerations. Matrix-grounds attempts
are very few:

[.V. Oseledets, E.E. Tyrtyshnikov, and N.L. Zamarashkin, Matrix inversion cases with
size-independent tensor rank estimates, Linear Algebra Appl., submitted, 2008.

E.E. Tyrtyshnikov, Tensor Ranks for Inversion of Tensor-Product Binomials, submitted,
2008.



