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OVERVIEW OF THE TALK

• Huge-sale data alls for sublinear omplexity

• Tensor bakground� Tuker deomposition� Canonial deomposition
• General rank redution methods� Tensor SVD (Higher Order SVD)� Alternating Least Squares (ALS)
• Reompression methods in matrix-by-matrix multipliation� Pre-reompression stage� Tuker-Tuker reompression algorithms
• Matrix inversion with sublinear omplexity� Newton�Shultz and its modi�ation� General theory for approximate iterations� Examples: 3D Laplaian and Newton potential� Inversion of a two-level Toeplitz matrix� Tensor eigensolver perspetives

• Conluding remarks and future work



WHAT IS A HUGE-SCALE PROBLEM?Solve ∫

D

1

|x − y|
ϕ(y)dy = f(x), x, y ∈ D = [0, 1]d

Let d = 3. Subdive the ube D into sububes Dijk:

Dijk = [ai−1, ai]×[aj−1, aj]×[ak−1, ak], 0 = a0 < a1 < ... < an = 1

ϕ(y) ≈ uijk = const íà Dijk (olloation) ⇒ Au = f

Vetors = disrete funtions uijk, fijk on a grid with n3 nodes.Matrix A ontains n6 nonzero entries, none of them an be negleted,no visible struture in the ase of nonuniform grids.
n = 64 ⇒ STORAGE FOR A = 512Gb � not few!
n = 256 ⇒ STORAGE FOR A = 2Pb (1 Pb = 250 byte).A big problem is already with storage for matrix oe�ients!



CAN WE STILL SOLVE IT?The only idea is to �nd a su�iently lose problemwith a �aunting low-parametri struture.Store only few parameters of this struture.Apply gain-of-the-struture methods.

USE SMOOTHNESS IN DATA!SMOOTHNESS = RANK STRUCTURES =TENSOR STRUCTURES



WHAT IS A TENSOR PROBLEM?

It is one where all data on input and output are given exatly or approximatelyin tensor formats de�ned by a small number of parameters ompared to thetotal amount of data.

For suh problems we propose to seek for algorithms that work with dataexlusively in tensor formats, the prie we pay is a ontamination of datathrough reompression (approximation) at eah operation.



WHAT ARE TENSORS?TENSOR = MULTI-INDEX ARRAY = MULTI-WAY ARRAY =MULTI-DIMENSIONAL MATRIX:
A = [aij...k]

i ∈ I, j ∈ J, ... , k ∈ KNumber of di�erent indies is dimension.Indies are alled also modes .Cardinalities of index ranges I, J, ..., K are mode sizes .In ase of dimension d and mode sizes n1, n2, ..., nd,
A is a tensor of size n1 × n2 × ... × nd.Talking of tensors, taitly assume that d ≥ 3.



TENSORS AND MATRICESLet A = [aijklm].Consider pairs of omplementary long indies

(ij) and (klm)

(kl) and (ijm)

.........Then A gives rise to several matries:
B1 = [b(ij),(klm)],

B2 = [b(kl),(ijm)]

.........with

b(ij),(klm) = b(kl),(ijm) = ... = aijklm



MODE UNFOLDING MATRICES

A1 = [ai,(jklm)]

A2 = [aj,(iklm)]

A3 = [ak,(ijlm)]

A4 = [al,(ijkm)]

A5 = [am,(ijkl)]Columns of unfolding matries are alled mode vetors .If d = 3, typial names are olumns, rows, �bers .Ranks of unfolding matries are alled mode ranks or Tuker ranks .

L. R. Tuker, Some mathematial notes on three-mode fator analysis,Psyhometrika, V. 31, P. 279�311 (1966).



TENSOR-BY-MATRIX MULTIPLICATIONSAlso alled mode ontrations .Given a tensor A = [aijk] and matries

U = [ui′i], V = [vj′j], W = [wk′k],de�ne new tensors
AU = A ×1 U = [aU

i′jk]

AV = A ×2 V = [aV
ij′k]

AW = A ×3 W = [aW
ijk′]as follows:

aU
i′jk =

∑

i

ui′i aijk ⇔ AU
1 = UA1

aV
ij′k =

∑

j

vj′j aijk ⇔ AV
2 = V A2

aW
ijk′ =

∑

k

wk′k aijk ⇔ AW
3 = WA3



WHY CONTRACTIONS?Let A = [aijk] be n × n × n and mode ranks be equal to r ≪ n.Consider QR deompositions of unfolding matries

A1 = Q1R1, A2 = Q2R2, A3 = Q3R2

Q1, Q2, Q3 are orthogonal n × r matries.De�ne the Tuker ore tensor G = [gαβγ]of ontrated size r × r × r:
G = A ×1 Q⊤

1 ×2 Q⊤
2 ×3 Q⊤

3 i.e. gαβγ =
∑

i,j,k

aijk q1
iα q2

jβ q3
kγ

THEOREM

A = G ×1 Q1 ×2 Q2 ×3 Q3 i.e. aijk =
∑

α,β,γ

gαβγ q1
iα q2

jβ q3
kγIMPORTANT: A is now represented in a ontrated formwith only 3nr + r3 ≪ n3 parameters.



TUCKER DECOMPOSITIONRegarded as Tensor SVD or Higher Order SVD :

A = G ×1 Q1 ×2 Q2 ×3 Q3 i.e. aijk =
∑

α,β,γ

gαβγ q1
iα q2

jβ q3
kγ

Orthogonal matries Q1, Q2, Q3 are Tuker fators or frame matries .THEOREMRows in eah of unfolding matries for the Tuker ore an bemade orthogonal and arranged in length-dereasing order .Row lengths of unfoldings for G = singular values of unfoldings for A.PROOF is easy via SVD of unfolding matries:if A1 = Q1Σ1V1 then (A ×1 Q⊤
1 )1 = Σ1V1.Same for other modes.



TUCKER APPROXIMATIONS

aijk ≈
∑

α,β,γ

gαβγ q1
iα q2

jβ q3
kγAPPLICATIONS:

• Multi-way Prinipal Component Analysis(senior frame matries are most informative).

• Tensor data ompression(ignore small and get to redued Tuker ranks ≪ mode sizes).

• New generation of numerial algorithmswith all data in the Tuker format.Enjoy linear and even sublinear omplexity in total size of data(ould be petabytes).I. Oseledets, D. Savostyanov, E. Tyrtyshnikov,Linear algbera for tensor problems, submitted to Computing (2008).G. Beylkin, M. Mohlenkamp, Algorithms for numerial analysis inhigh dimensions, SIAM J. Si. Comput., 26 (6), pp. 2133-2159 (2005).



CANONICAL DECOMPOSITION

aij...k =

ρ∑

t=1

uit vjt... wkt

Minimal ρ = tRank is alled anonial rank or tensor rank of A.THEOREMLet mode ranks be egual to r. Then
r ≤ tRank(A) ≤ r2.

CANONICAL APPROXIMATIONS
aij...k ≈

ρ∑

t=1

uit vjt... wktplay same ompression role as Tuker.Could be better but not neessarily!



TENSOR RANKS IN COMPLEXITY THEORYIn the �row-by-olumn� rule for multipliation of n × n matrieswe have n2 multipliations. Can we redue this number?

[
c1 c2

c3 c4

]
=

[
a1 a2

a3 a4

]
=

[
b1 b2

b3 b4

]

ck =
n∑

i=1

n∑

j=1

hijk ai bjLet ρ = tensor rank of hijk and anonial deomposition read

hijk =

ρ∑

t=1

uit vjt wkt ⇒

ck =

ρ∑

t=1

wkt

(
4∑

i=1

uitai

) 


n∑

j=1

vjtbj




Now we have ρ multipliations!If n = 2 then ρ = 7 (Strassen, 1965).By reursion ⇒ only O(nlog2 7) multipliations for arbitrary n.



TUCKER VS CANONICAL FOR MATRICES

aij =
r∑

α=1

r∑

β=1

gαβq1
iαq2

jβ ⇔ A = Q1GQ⊤
2Tuker = a pseudo-skeleton deomposition of A.

aij =

ρ∑

t=1

uitvjt ⇔ A = UV ⊤

Canonial = a skeleton or dyadi deomposition of A.

Tensor (anonial) rank seems to be a true generalizationof the matrix rank onept.

However, tensor rank for dimension ≥ 3 and matrix rankhave notiably di�erent properties.



KRONECKER PRODUCT REPRESENTATION

Tuker deomposition:
A =

∑

α,β,γ

gαβγ uα ⊗ vβ ⊗ wγ

Canonial deomposition:
A =

∑

t

ut ⊗ vt ⊗ wt



BASIC OPERATIONGiven two matries A and X, ompute a tensor-strutured approximation Ỹto their produt
Ỹ ≈ Y = AXso that Y never appears as a full matrix.Assume that A is N × N .Important ases for X:(a) X is a vetor (a retangular matrix of size N × 1);(b) X is a square matrix of the same order N .

Case (a) is a basi operation in all iterative solversfor linear systems or eigenvalue problems with the oe�ient matrix A.Case (b) is a workhorse operation in omputation of matrix funtions of A,in partiular A−1.



CANONICAL FORMAT
A =

ρ∑

t=1

At ⊗ Bt ⊗ Ct

X =

ρ∑

τ=1

Uτ ⊗ Vτ ⊗ WτTUCKER FORMAT
A =

r1∑

σ=1

r2∑

δ=1

r3∑

τ=1

fσδτAσ ⊗ Bδ ⊗ Cτ

X =

r1∑

α=1

r2∑

β=1

r3∑

γ=1

gαβγUα ⊗ Vβ ⊗ Wγ

Thus, N = n1n2...nd.Proeed as if d = 3, n = n1 = ... = nd, r = r1 = ... = rd.



COMBINATIONS OF FORMATS(CC) A and X are both in the anonial.

(CT) A is in the anonial, X is in the Tuker.

(TT) A and X are both in the Tuker.

The result Ỹ ≈ Y = AX is assumed to keep the format of X.

We fouse only on CT and TT .



PRE-RECOMPRESSION STAGE

A =
∑

σ,δ,τ

fσδτ Aσ ⊗ Bδ ⊗ Cτ

X =
∑

α,β,γ

gαβγ Uα ⊗ Vβ ⊗ Wγ

⇒ Y =
∑

σ,δ,τ

∑

α,β,γ

fσδτ gαβγ AσUα ⊗ BδVβ ⊗ CτWγ

Pre-reompression stage onsists in the omputation of matries

A′
σα = AσUα, B′

δβ = BδVβ, C ′
τγ = CτWγ.Consequently,

Y =
∑

σ,δ,τ

∑

α,β,γ

fσδτ gαβγ A′
σα ⊗ B′

δβ ⊗ C′
τγ.



GENERAL RANK REDUCTION METHODSConsider a general tensor Z = [zijk] with the mode sizes n.Tensor SVD (Higher Order SVD):

• Construt the unfolding matries Z1 = [zi,(jk)], Z2 = [zj,(ik)], Z3 = [zk,(ij)].

• Perform rank revealing deompositions (via SVD)

Z1 = Q1R1 + E1, Z2 = Q2R2 + E2, Z3 = Q3R3 + E3,where

Q1 = [q1
iα], Q2 = [q2

jβ], Q3 = [q3
kγ]are orthogonal n × r matries.

• Compute the Tuker ore tensor
hαβγ =

∑

i,j,k

q1
iα q2

jβ q3
kγ zijk.

• Finish with the Tuker approximation in the form
yijk ≈ ỹijk =

∑

αβγ

hαβγ q1
iα q2

jβ q3
kγ.

COMPLEXITY = O(n4)



GENERAL RANK REDUCTION METHODSAlternating Least Squares (ALS):

• Freeze Q2, Q3 and ompute
h1

iβγ =
∑

j,k

q2
jβ q3

kγ zijk.Consider a matrix H1 = [h1
iβγ] of size n×r2 (here β, γ form a �long index� for olumns)and �nd Q1 from a rank revealing deomposition

H1 = Q1R1 + F1with minimal ||F1||F . Note that Q1 is a maximizer for ||Q⊤H1||F over all matries Qwith r orthonormal olumns.
• Freeze Q1, Q3 and �nd the best �t Q2.
• Freeze Q1, Q2 and �nd the best �t Q3.
• Repeat until onvergene, then ompute the Tuker ore for the obtained mode framematries.COMPLEXITY = O(n3r + n2r2 + nr3)



GENERAL RECOMPRESSION ALGORITHMGiven zijk =
∑

α,β,γ hαβγ aiα bjβ ckγ with the mode sizes n and moderanks r0, �nd its approximation of lesser rank with r < r0.

• Compute orthogonal n × r0 matries Q1 = [q1
iα′], Q2 = [q2

jβ′], Q3 = [q3
kγ′] s.t.

[aiα] = Q1R1, [bjβ] = Q2R2, [ckγ] = Q3R3.

• Find an auxiliary r0 × r0 × r0 tensor h′
α′β′γ′ =

∑

α,β,γ

r1
α′α r2

β′β r3
γ′γ hαβγ via 3 steps:

h∗
α′βγ =

∑

α

r1
α′α hαβγ, h∗∗

α′β′γ =
∑

β

r2
β′β h∗

α′βγ, h′
α′β′γ′ =

∑

γ

r2
γ′γ h∗∗

α′β′γ.

• Redue its mode ranks: h′
α′β′γ′ ≈

r∑

σ=1

r∑

δ=1

r∑

τ=1

p1
α′σ p2

β′δ p3
γ′τ h̃σδτ .

• Finally, zijk ≈
r∑

σ=1

r∑

δ=1

r∑

τ=1

q̃1
iσ q̃2

jδ q̃3
lτ h̃σδτ with the Tuker fators

q̃1
iσ =

r0∑

α′=1

q1
iα′p

1
α′σ, q̃2

jδ =

r0∑

β′=1

q2
jβ′p

2
β′δ, q̃3

jτ =

r0∑

γ′=1

q2
kγ′p

3
γ′τ .

COMPLEXITY = O(nr2
0 +nr0r + r4

0) (possibly r3
0r instead of r4

0)



TUCKER-TUCKER RECOMPRESSION ALGORITHM

• Find orthogonal n × r2 matries Q1 = [q1
i,(σ′α′)], Q2 = [q2

j,(δ′β′)], Q3 = [q3
k,(τ ′γ′)]s.t.

[ai,(σα)] = Q1R1, [bj,(δβ)] = Q2R2, [ck,(τγ)] = Q3R3.

• De�ne the auxiliary ore tensor by
hσ′α′δ′β′τ ′γ′ =

∑

σ,δ,τ

∑

α,β,γ

r1
σ′α′σα r2

δ′β′δβ r3
τ ′γ′τγ fσδτ gαβγand ompute it through the following presriptions:

h′
σ′α′δβτγ =

∑

σ,α

r2
σ′α′σα fσδτ gαβγ,

h′′
σ′α′δ′β′τγ =

∑

δ,β

r2
δ′β′δβ h′

σ′α′δβτγ,

hσ′α′δ′β′τ ′γ′ =
∑

τ,γ

r3
τ ′γ′τγ h′′

σ′α′δ′β′τγ.

• Apply a mode rank redution algorithm to the auxiliary tensor.
• Reompute the Tuker fators in the �nal Tuker approximation with mode ranks r.COMPLEXITY = O(nr4 + r8) MEMORY = O(nr2 + r6)



TUCKER-TUCKER ALS RECOMPRESSION ALGORITHM

• Freeze Q2, Q3 and �nd the best �t for Q1: ompute

vβ′δβ =
∑

j

q2
jβ′ bjδβ, wγ′τγ =

∑

k

q3
kγ′ ckτγ,then aquire

hiβ′γ′ =
∑

σ,δ,τ

∑

α,β,γ

fσδτ gαβγ vβ′δβ wγ′τγ aiσαvia the following presriptions:
u′

αβγ′τ =
∑

γ

gαβγ wγ′τγ, u′′
αβγ′σδ =

∑

τ

u′
αβγ′τ fσδτ ,

uαγ′σβ′ =
∑

δ,β

u′′
αβγ′σδ vβ′δβ, hiβ′γ′ =

∑

σ,α

uαγ′σβ′ aiσα.Obtain Q1 from a rank revealing deomposition of the matrix H1 = [hi,(β′γ′)] of size

n × r2.

• Similarly, freeze Q1, Q3 and �nd the best �t for Q2, then freeze Q1, Q2 and �nd thebest �t for Q3.

• Repeat until onvergene.COMPLEXITY = O(nr4 + r6), MEMORY = O(nr2 + r5).



BEWARE OF A POSSIBLE PITFALLOne may want to irumvent the omputation of a full r2 × r2 × r2 ore andtry to ompress �rst the fator matries via SVD (instead of QR).This may not work!

EXAMPLE:
A = UV ⊤ =

(
a ε2b

) ( c⊤

ε−1d⊤

)
= ac⊤ + εbd⊤

a, b, c, d are unit-length vetors of size n and (a, b) = (c, d) = 0

If we �ompress� U and V separately, then the senior singular vetors of Uand V would be a and d. Hene,
A ≈ γad⊤,whih leaves us with no hope.Thus, we have to ompute the full ore and treat all the fators simultaneously,not separately.



MATRIX INVERSION ALGORITHMSNewton�Shultz method
Xk+1 = 2Xk − XkAXk, k = 0, 1, ...onverges quadratially (in exat arithmetis) if ||I − AX0|| < 1.Let A be given in the Tuker format and the same struture be maintained forall iterates Xk:

Zk+1 = 2Xk − XkAXk, Xk+1 = P(Zk+1).

P is a (nonlinear) projetor onto the manifold of matries in the Tuker formatwith mode ranks r1, r2, r3 seleted and �xed before the method starts.Trunated iteration onverge still quadratially if
P(A−1) = A−1 + E, ||E|| ≤ εuntil ||Xk − A−1|| > cε for some c > 1.



GENERAL THEORY OF APPROXIMATE ITERATIONS

V a normed spae
B ∈ V the target of omputaionITERATIVE PROCESS: Xk = Φk(Xk−1)LEMMA.Assume ∃ α > 1, εΦ, cΦ s.t.

||X − B|| ≤ εΦ ⇒

||Φk(X) − B|| ≤ cΦ||X − B||α.

Then

||X0 − B|| < ε ⇒

||Xk − B|| ≤ c−1 (c ||X0 − B|| )αk

, k = 1, 2 ...

ε = min
(
εΦ, c−1

)
, c = c

1
α−1
Φ



S ⊂ V a subset of �strutured� elements (e.g. strutured matries)

R : V → S a trunation operator.

X ∈ S ⇒ R(X) = X.

TRUNCATED ITERATIVE PROCESS:
Y0 = R(X0)

Yk = R(Φk(Yk−1))



THEOREM 1.Assume that(1) Premises of Lemma are ful�lled.(2) R(B) = B.(3) ||X − B|| ≤ εΦ ⇒ ||X − R(X)|| ≤ cR ||X − B||.

Then ∃ δ > 0 s.t.
Y0 = R(Y0), ||Y0 − B|| < δ ⇒

||Yk − B|| ≤ cRΦ ||Yk−1 − B||α, k = 1, 2, ...

cRΦ = (cR + 1)cΦW. Hakbush, B.N. Khoromskij, E. Tyrtyshnikov. Approximate iteration for stru-tured matries. Preprint no. 112, Max-Plank-Institut f�ur Mathematik in den Natur-wissenshaften, Leipzig 2005. Numer. Math., DOI 10.1007/s00211-008-0143-0, 2008.



THEOREM 2.Assume ∃ εΦ, cR, εRB s.t

||X − B|| ≤ εΦ ⇒
||X − R(X)|| ≤ cR ||X − B|| + εRB.Let m be the minimal k s.t.
eα

k−1 ≤ εRB

cRΦ

, cRΦ = (cR + 1)cΦ.Then errors ek = ||Yk−B|| of trun. iter. derease superlinearly until k ≤ m:

k ≤ m − 1 ⇒ ek ≤ 2cRΦ eα
k−1,

k ≥ m ⇒ em ≤ 2εRB.

PROOF. Zk := Φk(Yk−1)

||Yk −B|| ≤ ||Yk −Zk||+ ||Zk −B|| ≤ (cR +1)||Zk −B||+εRB ⇒

ek ≤ cRΦ eα
k−1 + εRB ≤ 2cRΦ eα

k−1.



MODIFIED NEWTON�SCHULTZ

Xk+1 = Xk(2I − AXk) = Xk(2I − Yk) with Yk = AXk ⇒
AXk+1 = AXk(2I − Yk) ⇒

Yk+1 = Yk(2I − Yk), Xk+1 = Xk(2I − Yk)

X0 is an initial guess for A−1, Y0 = AX0.

TRUNCATED VERSION:
Hk = P(2I − Yk), Yk+1 = P1(YkHk), Xk+1 = P2(XkHk)

Projetors P1, P2 ought to maintain the required auray and P an be away less aurate.If X0 is lose enough to A−1 then Yk and Hk are lose to I, a �perfetstruture� matrix. Experiments on�rm that the modi�ed Newton method isfaster and more aurate than the standard Newton method.



INVERSION OF A 3D LAPLACIAN

A = △ ⊗ I ⊗ I + I ⊗ △ ⊗ I + I ⊗ I ⊗ △

△ = tridiag(−1, 2, −1)

N = n3 323 643 1283 2563Time 9 se 11 se 24 se 227 se

||AX − I||F /||I||F 3 · 10−6 4 · 10−6 2 · 10−5 10−4

For the Laplaian, projetors are hosen as follows:
P = P(2,2,2), P1 = P2 = P(12,12,12).

P(r1r2r3) is a projetor onto tensors with mode ranks r1, r2, r3.



INVERSION OF A NEWTON-POTENTIAL MATRIXMode ranks for the Newton potential matrix, ε = 10−5

N = n3 323 643 1283 2563

r 10 12 13 15

Timings for the Newton potential matrix
N = n3 323 643 1283 2563Time 60 se 107 se 360 se 1574 se

||AX − I||F/||I||F 10−2 9 · 10−3 5 · 10−2 4 · 10−2

For the Newton potential matrix, to ause the method to onverge we had toselet

P = P1 = P2 = P(10,10,10).



SUBLINEAR COMPLEXITY FOR 2D TOEPLITZ INVERSIONConsider a 5-point Laplaian of order N = n2 (2-level Toeplitz matrix).The inverse matrix is approximated by the Newton�Shultz method

Xk+1 = APPROXIMATION(2Xk − XkAXk)with a rank-strutured approxination of all omputed matries: by matries oflimited tensor rank and limited displaement rank of eah blok.n 642 1282 2562 5122Tensor rank A−1 9 10 11 12Averaged displaement rank of A−1 13.5 13.5 16.8 18.6Inversion of the 5-point LaplaianTime behaves as O(
√

Nr2
mean),

rmean = averaged displaement rank.V.Olshevsky, I.Oseledets, E.Tyrtyshnikov,Superfast inversion of two-level Toeplitz matries using Newton iteration and tensor-displaementstruture, Operator Theory Advanes and Appliations, vol. 179, pp. 229�240 (2007).



Low-parametri representations of inverse matriesontain o(N) parameters.Hene, all di�ulties are relegated to the representation ofvetors, not matries!



TENSOR STRUCTURE IN VECTORS

x =




1
2
3
4
5
6
7
8
9




⇔ X =



1 4 7
2 5 8
3 6 9




X = MATRIX(x) ⇔ x = VECTOR(X)

X =



1
2
3


 [1 1 1

]
+



1
1
1


 [0 1 2

]
= u1v

⊤
1 + u2v

⊤
2

x = v1 ⊗ u1 + v2 ⊗ u2



EIGENVECTOR STRUCTURE

M = A ⊗ B + C ⊗ DIf A, C and B, D are two pairs of ommuting matries,then any eigenvetor has a tensor rank-1 struture.DISCRETE LAPLACIAN CASE
Mu = λu, M = A ⊗ I + I ⊗ A

A =




2 −1
−1 2 −1

... ... ...
−1 2 −1

−1 2




xkl = uk ⊗ vl uk
s = sin

πks

n + 1
, vl

t = sin
πlt

n + 1

λkl = 4 sin2 πk

2(n + 1)
+ 4 sin2 πl

2(n + 1)
, 1 ≤ k, l ≤ n



USE TENSOR VECTORS IN EIGENSOLVERSLANCZOS:
• Choose an initial vetor p1 with ||p1|| = 1 and set p0 = 0, b0 = 0.

• For k = 1, 2, ... ompute
zk = Mpk

ak = (zk, pk)
qk = zk − akpk − bk−1pk−1

bk = ||qk||
pk+1 = qk/bk

• Compute the Rietz values as the eigenvalues of a projetion k × k matrix(a symmetri tridiagonal matrix onsisting of the values ak, bk)

Mk = P ⊤
k MPk, Pk = [p1, ..., pk].



TENSOR LANCZOS
• Choose an initial vetor p1 with ||p1|| = 1 and set p0 = 0, b0 = 0.

• For k = 1, 2, ... ompute
zk = Mpk

ak = (zk, pk)
qk = Tε(zk − akpk − bk−1pk−1)
bk = ||qk||
pk+1 = qk/bk

• Compute the Rietz values using k × k projetion matries.STANDARD VERSUS TENSOR (50 iterations)n 1000 2000 4000 6000Lanzos time (se) 2.8 12.1 76.7 224.9Tensor Lanzos time (se) 0.4 0.7 1.5 2.2For n = 6000 we observe a 100 times aeleration.



MORE EXAMPLES
Mr = M −

ρ∑

t=1

Dt ⊗ Dt

M = −Laplaian. Dt are diagonal matries with positive entries.Compare maximal eigenvalues on the 50th iteration.

n = 3002, trunation rank = 10, ε = 10−2.
ρ 1 3 5 7 9Standard Lanzos 7.989 7.957 7.925 7.900 7.893Tensor Lanzos 7.977 7.940 7.917 7.893 7.906Entries of Dt are uniform grid values of (1 + Tt(x))/10,

Tt is the Chebyshev polynomial of degree t.
ρ 1 3 5 7 9Standard Lanzos 7.862 7.615 7.302 6.800 6.460Tensor Lanzos 7.852 7.608 7.292 6.789 6.452Entries of Dt ome from random vetors with uniform distribution on [0, 1].



SUBLINEAR COMPLEXITY

For 2-dimensional problems time growsas SQUARE ROOTof total number of nodes!

For d-dimensional problems time should growas ROOT OF DEGREE dof total number of nodes!



FUTURE RESEARCH
• Additional struture for matrix fators (wavelet sparsi�ation, Toeplitz-likestruture, irulant-plus-low rank struture).

• Iterative methods for matrix funtions (sign funtions, square root, matrixexponential).
• Iterative methods for linear systems with strutured vetors (PCG,BiCGStab)and preonditioners omputed by the Newton method.
• Eigenvalue solvers with tensor-strutured eigenvetors.



FUTURE RESEARCHA hallenge topi for the linear algebra and matrix analysis ommunity:Whih properties of matries do aount for a Tuker approximation with lowmode ranks for the inverses, matrix exponentials and other matrix funtions?All experiments are in favour of the following hypothesis: for all pratial op-erators of mathematial physis (di�erential operators, integral operators withsmooth, singular and hypersingular kernels) on tensor grids, standard matrixfuntions an be approximated in the Tuker format with ranks of order

r ∼ logα n logβ ε−1,with some onstants α, β. The known theorems on tensor struture of thematrix funtions rely on analytial onsiderations. Matrix-grounds attemptsare very few:I.V. Oseledets, E.E. Tyrtyshnikov, and N.L. Zamarashkin, Matrix inversion ases withsize-independent tensor rank estimates, Linear Algebra Appl., submitted, 2008.E.E. Tyrtyshnikov, Tensor Ranks for Inversion of Tensor-Produt Binomials, submitted,2008.


