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Problem

The Problem - Variational Form

Convection-Diffusion Equations{
div

(
−a(x)∇u + ~β(x)u

)
= f , x ∈ Ω,

u|∂Ω = 0.

Variational form find u ∈ H1
0 (Ω) such that∫

Ω

(
a∇u · ∇ϕ− ~β · ∇ϕ u

)
=

∫
Ω

f ϕ for all ϕ ∈ H1
0 (Ω).

Regularity Assumptions
a ∈ C2(Ω), with a(x) ≥ a0 > 0,
~β ∈ C1(Ω), with div(~β) ≥ 0 pointwise in Ω,
f ∈ L2(Ω).
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Problem

The Problem - FE Approximation - I

Let
Th = {K} finite element partition of Ω, polygonal
domain, into triangles,
hK = diam(K ),
h = maxK hK .

We consider the space of linear finite elements
Vh ={ϕh : Ω → R s.t. ϕh is continuous, ϕh|K is linear, and ϕh|∂Ω = 0}⊂H1

0 (Ω)

with basis

ϕi ∈ Vh s.t. ϕi (node j) = δi,j , i , j = 1, . . . , n(h),

n(h) = dim(Vh) = number of the internal nodes of Th.
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Problem

The Problem - FE Approximation - II

The variational equation becomes

An(a, ~β)u = b

Th = {K}
with

An(a, ~β) =
∑
K∈Th

AK
n (a, ~β) = Θn(a) + Ψn(~β) ∈ Rn×n, n = n(h),

(Θn(a))i,j =
∑
K∈Th

∫
K

a ∇ϕj · ∇ϕi diffusive term,

(Ψn(~β))i,j = −
∑
K∈Th

∫
K

(~β · ∇ϕi ) ϕj convective term,

and with suitable quadrature formulas in the case of non constant a and ~β.
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Motivations

Motivations

Motivations

Recent attention to Hermitian/Skew-Hermitian splitting (HSS) iterations
proposed in Bai et al. (2003) for non-Hermitian linear systems with positive
definite real part: Bai, Benzi, Bertaccini, Gander, Golub, Ng, Serra-Capizza-
no, Simoncini, TP, . . .

Preconditioned HHS splitting iterations proposed in Bertaccini et al. (2005)
for non-Hermitian linear systems with positive definite real part.

Previously considered preconditioning strategy for FD/FE approximations of
diffusion Eqns and FD approximations of Convection-Diffusion Eqns:
Beckermann, Bertaccini, Golub, Serra-Capizzano, TP, . . .

Aim
To study the effectiveness of the proposed Preconditioned HSS method applied to
the FE approximations of Convection-Diffusion Eqns. both from the theoretical
and numerical point of view.
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C. Tablino-Possio (Università di Milano-Bicocca) Spectral analysis and preconditioning in FE approximations of elliptic PDEs Cortona 2008 6 / 28



PHSS Method

PHSS Method - Definition

Let us consider

Anx = b, An ∈ Cn×n with a positive definite real part, x,b ∈ Cn

The HSS method [1] refers to the Hermitian/Skew-Hermitian splitting

An = Re(An) + i Im(An), i2 = −1

with Re(An) = (An + AH
n )/2 and Im(An) = (An − AH

n )/(2i) Hermitian matrices.

Here, we consider the Preconditioned HSS (PHSS) method [2]{ (
αI + P−1

n Re(An)
)
xk+ 1

2 =
(
αI − P−1

n i Im(An)
)
xk + P−1

n b(
αI + P−1

n i Im(An)
)
xk+1 =

(
αI − P−1

n Re(An)
)
xk+ 1

2 + P−1
n b

with Pn Hermitian positive definite matrix and α positive parameter.

[1] Bai, Golub, Ng, SIMAX, 2003.

[2] Bertaccini, Golub, Serra-Capizzano, TP, Numer. Math., 2005.
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PHSS Method

PHSS Method - Convergence Properties

Theorem (Bertaccini et al., 2005)

Let An ∈ Cn×n be a matrix with positive definite real part, let α be a positive
parameter and let Pn ∈ Cn×n be a Hermitian positive definite matrix.
Then, the PHSS method is unconditionally convergent, since

%(M(α)) ≤ σ(α) = max
λi∈λ(P−1

n Re(An))

∣∣∣∣α− λi

α + λi

∣∣∣∣ < 1 for any α > 0,

with iteration matrix
M(α) =

(
αI + i P−1

n Im(An)
)−1 (

αI − P−1
n Re(An)

) (
αI + P−1

n Re(An)
)−1 (

αI − i P−1
n Im(An)

)
.

Moreover, the optimal α value that minimizes the quantity σ(α) equals

α∗ =

√
λmin(P

−1
n Re(An))λmax(P

−1
n Re(An)) and σ(α∗) =

√
κ− 1√
κ + 1

with κ = λmax(P
−1
n Re(An))/λmin(P

−1
n Re(An)) spectral condition number.
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PHSS Method

PHSS/IPHSS Method - Inexact Iterations

From a practical point of view, the PHSS method can also be interpreted as the
original HSS method where the identity matrix is replaced by Pn, i.e.,{

(αPn + Re(An)) xk+ 1
2 = (αPn − i Im(An)) xk + b

(αPn + i Im(An)) xk+1 = (αPn − Re(An)) xk+ 1
2 + b.

In practice, the two half-steps of the outer iteration can be computed by applying
a PCG and a Preconditioned GMRES method, with preconditioner Pn.

The accuracy for the stopping criterion of these additional inner iterative
procedures is chosen by taking into account the accuracy obtained
by the current step of the outer iteration.

We denote by IPHSS method the described inexact PHSS iterations.
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Preconditioning Strategy

The Preconditioning Strategy - Definition - I

In the case of the considered FE approximation of Convection-Diffusion Eqns,
the Hermitian/skew-Hermitian splitting is given by

Re(An(a, ~β)) =
∑
K∈Th

Re(AK
n (a, ~β)) = Θn(a) + Re(Ψn(~β)) spd,

i Im(An(a, ~β)) = i
∑
K∈Th

Im(AK
n (a, ~β)) = i Im(Ψn(~β)),

and can be performed on any single elementary matrix related to Th.
Notice that Re(Ψn(~β)) = 0 if div(~β) = 0.

Lemma
Let {En(~β)}, En(~β) := Re(Ψn(~β)).

Under the regularity assumptions, then it holds

‖En(~β)‖2 ≤ ‖En(~β)‖∞ ≤ Ch2,

with C absolute constant only depending on ~β(x) and Ω.
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Preconditioning Strategy

The Preconditioning Strategy - Definition - II

The considered preconditioning matrix sequence, proposed in [1], is defined as

{Pn(a)}, Pn(a) = D
1
2
n (a)An(1, 0)D

1
2
n (a)

where Dn(a) = diag(An(a, 0))diag−1(An(1, 0)), i.e., the suitable scaled main
diagonal of An(a, 0) and An(a, 0) equals Θn(a).

Notice that the preconditioner is tuned only with respect to the diffusion matrix
Θn(a) owing to the PHSS convergence properties.

[1] Serra-Capizzano, Numer. Math., 1999.
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Spectral Analysis

Spectral Analysis - Structured Meshes - I

Let {An(a, ~β)}, n = n(h) be the matrix sequence associated to a family {Th},
with decreasing parameter h.

Aim:

to quantify the difficulty of the linear system resolution vs the accuracy
of the approximation scheme;

to prove the optimality of the PHSS method.

We analyze the spectral properties of the preconditioned matrix sequences

{P−1
n (a)Re(An(a, ~β))} wrt PHSS/PCG

{P−1
n (a)Im(An(a, ~β))} wrt PGMRES

τ(4−2 cos(s)−2 cos(t))

in the special case of Ω = (0, 1)2 with a structured uniform mesh.
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Spectral Analysis

Spectral Analysis - Structured Meshes - II

Theorem

Let {Re(An(a, ~β))} and {Pn(a)} be the Hermitian positive definite matrix
sequences previously defined.
Under the regularity assumptions, the sequence {P−1

n (a)Re(An(a, ~β))} is properly
clustered at 1.
Moreover, for any n all the eigenvalues of P−1

n (a)Re(An(a, ~β)) belong to an
interval [d ,D] well separated from zero (Spectral equivalence property).

The previous results prove the optimality both of the PHSS method and of the
PCG, when applied in the IPHSS method for the inner iterations.

The proof technique refers to a previously analyzed FD case [1] and it is extended

for dealing with the contribution given by En(~β).

[1] Serra-Capizzano, TP, ETNA, 2000; SIMAX 2003.
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Spectral Analysis
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Spectral Analysis

Spectral Analysis - Structured Meshes - III

Theorem

Let {Im(An(a, ~β))} and {Pn(a)} be the Hermitian matrix sequences previously
defined.
Under the regularity assumptions, the sequence {P−1

n (a)Im(An(a, ~β))} is
spectrally bounded and properly clustered at 0 with respect to the eigenvalues.

The previous results prove that PGMRES converges superlinearly when applied to
the matrix I + iP−1

n (a)Im(An) in the IPHSS method for the inner iterations.

The proof technique refers to the spectral Toeplitz theory and to the standard
FE assembling procedure, according to a more natural local domain analysis
approach [1].

[1] Beckermann, Serra-Capizzano, SINUM, 2007.
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Spectral Analysis

Spectral Analysis - Remarks

Remark

The previous Lemma and two Theorems hold both in the case in which
the matrix elements are evaluated exactly and whenever a quadrature formula
with error O(h2) is considered to approximate the involved integrals.
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Complexity Issues

Complexity Issues - I

Definition (Axelsson, Neytcheva, 1994)

Let {Amxm = bm} be a given sequence of linear systems of increasing dimensions.
An iterative method is optimal if

the arithmetic cost of each iteration is at most proportional to the complexity
of a matrix-vector product with matrix Am,

the number of iterations for reaching the solution within a fixed accuracy can
be bounded from above by a constant independent of m.

Since
Pn(a) = D1/2

n (a)An(1, 0)D1/2
n (a),

the solution of FE linear system with matrix An(a, ~β) is reduced to computations
involving diagonals and the matrix An(1, 0).
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Complexity Issues

Complexity Issues - II

The latter task can be efficiently performed by means of fast Poisson solvers (e.g.
cyclic reduction idea [1]) or several specialized algebraic multigrid methods [2] or
geometric multigrid methods [3].

Therefore, for structured uniform meshes and under the regularity assumptions,
the optimality of the PHSS method is theoretically proved.

The PHSS/IPHSS numerical performances do not worsen in the case of
unstructured meshes.

[1] Buzbee, Dorr, George, Golub, SINUM, 1971.
[2] Serra-Capizzano, Numer. Math., 2002.
[3] Trottenberg, Oosterlee, Schüller, Academic Press, 2001.
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Numerical Tests

Numerical Tests - PHSS/IPHSS Stopping Criterion

All the reported numerical experiments are performed in Matlab.
The outer iterative solvers starts with zero initial guess and the stopping criterion
||rk ||2 ≤ 10−7||r0||2 is considered for the outer iterations.

The numerical tests compare the PHSS and the IPHSS convergence properties.

In fact, a significant reduction of the computational costs can be obtained if the
inner iterations are switched to the (k + 1)–th outer step if

||rj,PCG ||2
||rk ||2

≤ 0.1 ηk ,
||rj,PGMRES ||2

||rk ||2
≤ 0.1 ηk ,

respectively, where k is the current outer iteration, η ∈ (0, 1), and where rj is the
residual at the j–th step of the present inner iteration.
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Numerical Tests

Numerical Tests - Parameter α

The PHSS method is unconditionally convergent for any α > 0. However, a
suitable tuning can significantly reduce the number of outer iterations.

Clearly, the choice α = 1 is evident whenever a cluster at 1 of the matrix sequence
{P−1

n (a)Re(An(a, ~β))} is expected.

In the other cases, the target is to approximatively estimate the optimal α value

α∗ =

√
λmin(P

−1
n Re(An))λmax(P

−1
n Re(An))

that makes the spectral radius of the PHSS iteration matrix bounded by

σ(α∗) =

√
κ− 1√
κ + 1

,

with κ = λmax(P
−1
n Re(An))/λmin(P

−1
n Re(An)) spectral condition number.
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Numerical Tests

Numerical Tests - Structured Meshes - I

Test I: a(x , y) = exp(x + y), ~β(x , y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
81 5 1.6 (8) 2.4 (12) 5 1 (5) 1 (5)
361 5 1.6 (8) 2.8 (14) 5 1 (5) 1 (5)
1521 5 1.6 (8) 3 (15) 5 1 (5) 2 (10)
6241 5 1.6 (8) 3.2 (16) 5 1 (5) 2 (10)
25281 5 1.6 (8) 3.6 (18) 5 1 (5) 2 (10)

Number of PHSS/IPHSS outer iterations and average per outer step for PCG and PGMRES inner iterations
(total number of inner iterations in brackets)

n P−1
n (a)Re(An(a, ~β)) P−1

n (a)Im(An(a, ~β))
m− m+ ptot λmin λmax m− m+ ptot λmin λmax

81 0 0 0% 9.99e-01 1.04e+00 0 0 0% -2.68e-02 2.68e-02
361 0 0 0% 9.99e-01 1.04e+00 0 0 0% -2.87e-02 2.87e-02
1521 0 0 0% 9.99e-01 1.044e+0 0 0 0% -2.93e-02 2.93e-02

Outliers analysis (δ = 0.1)
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Numerical Tests

Numerical Tests - Structured Meshes - II

Test II: a(x , y) = exp(x + |y − 1/2|3/2), ~β(x , y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
81 6 2.2 (13) 2.8 (17) 6 1 (6) 1 (6)
361 6 2.2 (13) 3.2 (19) 6 1 (6) 2 (12)
1521 6 2.2 (13) 3.5 (21) 6 1 (6) 2 (12)
6241 6 2.2 (13) 4 (24) 6 1 (6) 2 (12)
25281 6 2.2 (13) 4.2 (25) 6 1 (6) 3 (18)

Number of PHSS/IPHSS outer iterations and average per outer step for PCG and PGMRES inner iterations
(total number of inner iterations in brackets)

n P−1
n (a)Re(An(a, ~β)) P−1

n (a)Im(An(a, ~β))
m− m+ ptot λmin λmax m− m+ ptot λmin λmax

81 0 1 1.2% 9.97e-01 1.12e+00 0 0 0% -4.32e-02 4.32e-02
361 0 1 0.27% 9.99e-01 1.12e+00 0 0 0% -4.68e-02 -4.68e-02
1521 0 1 6% 9.99e-01 1.12e+00 0 0 0% -4.78e-02 4.78e-02

Outliers analysis (δ = 0.1)
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Numerical Tests

Numerical Tests - Structured Meshes - III

Test III: a(x , y) = exp(x + |y − 1/2|), ~β(x , y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
81 7 1.9 (13) 2.6 (18) 7 1 (7) 1 (7)
361 7 2.2 (15) 3 (21) 7 1 (7) 1.7 (12)
1521 7 2.2 (15) 3.5 (24) 7 1.1 (8) 2 (14)
6241 7 2.3 (16) 3.6 (25) 7 1.1 (8) 2 (14)
25281 7 2.3 (16) 4 (28) 7 1.1 (8) 2.1 (15)

Number of PHSS/IPHSS outer iterations and average per outer step for PCG and PGMRES inner iterations
(total number of inner iterations in brackets)

n P−1
n (a)Re(An(a, ~β)) P−1

n (a)Im(An(a, ~β))
m− m+ ptot λmin λmax m− m+ ptot λmin λmax

81 0 1 1.2% 9.95e-01 1.16e+000 0 0 0% -3.97e-02 3.97e-02
361 0 1 0.28% 9.97e-01 1.17e+00 0 0 0% -4.31e-02 4.31e-02
1521 0 1 0.07% 9.98e-01 1.18e+00 0 0 0% -4.40e-02 4.40e-02

Outliers analysis (δ = 0.1)
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Numerical Tests

Numerical Tests - Other Structured Meshes - I

Other Structured Meshes

a(x, y) = exp(x + y), ~β(x, y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
25 5 2.2 (11) 2.2(11) 5 1 (5) 1 (5)
113 5 2.2 (11) 2.4 (12) 5 1 (5) 1 (5)
481 5 2.2 (11) 2.8 (14) 5 1 (5) 1 (5)
1985 5 2.2 (11) 3 (15) 5 1 (5) 2 (10)
8065 5 2.2 (11) 3.4 (17) 5 1 (5) 2 (10)
32513 5 2.2 (11) 3.6 (18) 5 1 (5) 2 (10)

Number of PHSS/IPHSS outer iterations and average per outer step for PCG and PGMRES inner iterations
(total number of inner iterations in brackets)
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Numerical Tests

Numerical Tests - Other Structured Meshes - II

a(x, y) = exp(x + |y − 1/2|3/2), ~β(x, y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
25 6 2.2 (13) 2.5 (15) 6 1 (6) 1 (6)
113 6 2.2 (13) 3 (18) 6 1 (6) 1 (6)
481 6 2.2 (13) 3.2 (19) 6 1 (6) 2 (12)
1985 6 2.2 (13) 3.7 (22) 6 1 (6) 2 (12)
8065 6 2.2 (13) 4 (24) 6 1 (6) 2 (12)
32513 6 2.2 (13) 4.3 (26) 6 1 (6) 3 (18)

a(x, y) = exp(x + |y − 1/2|), ~β(x, y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
25 6 2.2 (13) 2.5 (15) 6 1 (6) 1 (6)
113 7 2 (14) 2.7 (19) 7 1 (7) 1 (7)
481 7 2.1 (15) 3 (21) 7 1.1 (8) 1.8 (13)
1985 7 2.3 (16) 3.4 (24) 7 1.1 (8) 2 (14)
8065 7 2.4 (17) 3.8 (27) 7 1.1 (8) 2 (14)
32513 8 2.1 (17) 3.8 (30) 8 1.1 (9) 2.1 (17)

Number of PHSS/IPHSS outer iterations and average per outer step for PCG and PGMRES inner iterations
(total number of inner iterations in brackets)
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Numerical Tests

Numerical Tests - Unstructured Meshes - I

Unstructured Meshes

a(x, y) = exp(x + y), ~β(x, y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
55 5 2.2 (11) 2.2 (11) 5 1 (5) 1 (5)
142 5 2.2 (11) 2.6 (13) 5 1 (5) 1 (5)
725 5 2.2 (11) 3 (15) 5 1 (5) 1 (5)
1538 5 2.2 (11) 3 (15) 5 1.2 (6) 1.2 (6)
7510 5 2.2 (11) 3 (17) 5 1.2 (6) 1.8 (9)
15690 5 2.2 (12) 3.4 (18) 6 1.2 (7) 2 (12)

Number of PHSS/IPHSS outer iterations and average per outer step for PCG and PGMRES inner iterations
(total number of inner iterations in brackets)
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Numerical Tests

Numerical Tests - Unstructured Meshes - II

a(x, y) = exp(x + |y − 1/2|3/2), ~β(x, y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
55 6 2.2 (13) 2.7 (16) 6 1 (6) 1 (6)
142 6 2.2 (13) 3 (18) 6 1 (6) 1 (6)
725 6 2.2 (13) 3.3 (20) 6 1 (6) 2 (12)
1538 6 2.2 (13) 3.5 (21) 6 1.2 (7) 2 (12)
7510 7 2 (14) 3.7 (26) 7 1.1 (8) 2 (14)
15690 7 2 (14) 3.7 (26) 7 1.1 (8) 2 (14)

a(x, y) = exp(x + |y − 1/2|), ~β(x, y) = [x y ]T

n PHSS PCG PGMRES IPHSS PCG PGMRES
55 7 1.8 (13) 2.4 (17) 7 1 (7) 1 (7)
142 7 2.2 (15) 2.8 (20) 7 1 (7) 1 (7)
725 7 2.6 (18) 3.1 (22) 7 1.1 (8) 2 (14)
1538 7 2.6 (18) 3.4 (24) 7 1.1 (8) 2 (14)
7510 7 2.6 (18) 3.7 (26) 7 1.1 (8) 2 (14)
15690 8 2.4 (19) 3.6 (29) 8 1.1 (9) 2 (16)

Number of PHSS/IPHSS outer iterations and average per outer step for PCG and PGMRES inner iterations
(total number of inner iterations in brackets)
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Some Perspectives

a(x , y) = exp(x + y)

n PCG - Pn(a) PCG - P̃n(a)
37 4 9
169 4 10
721 4 11
2977 4 12
12097 4 12

Number of PCG iterations for Diffusion Eqns.

Pn(a) = D
1
2
n (a)An(1, 0)D

1
2
n (a)

P̃n(a) = D
1
2
n (a)T̃nD

1
2
n (a),

T̃n = ΠTmΠ,
Tm = Tm(6− 2 cos(s)− 2 cos(t)− 2 cos(s + t))
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Conclusions

The PHSS and IPHSS methods have the same convergence features, but
the cost per iteration of the latter is substantially reduced.

With the choice α = 1 and under the regularity assumptions the PHSS
method is optimally convergent, i.e., with a convergence rate independent of
the matrix dimension n(h).

In the inner IPHSS iteration

the PCG converges superlinearly owing to the proper cluster at 1 of the
matrix sequence {P−1

n (a)Re(An(a, ~β))}, that induces a proper cluster at 1

for the sequence {I + P−1
n (a)Re(An(a, ~β))};

the PGMRES converges superlinearly when applied to the coefficient matrices
{I + iP−1

n (a)Im(An)}, owing to the spectral boundeness and the proper

clustering at 0 of the sequence {P−1
n (a)Im(An(a, ~β))}.
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