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Distribution in the sense of the eigenvalues

{An}, An ∈ Mdn
(C), dn < dn+1,

θ measurable function on K ⊂ C
t, t ≥ 1,

0 < µ{K} < ∞, µ{·} Lebesgue measure,

F ∈ Cc(C) (continuous functions with bounded support),

Σλ(F,An) = 1
dn

∑dn

j=1 F [λj(An)].

Definition. The matrix sequence {An} is distributed in the
sense of the eigenvalues as the function θ on the set K (in
symbols {An} ∼λ (θ,K)) if

lim
n→∞

Σλ(F,An) =
1

µ{K}

∫

K

F (θ(s)) ds, ∀F ∈ Cc(C).
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f ∈ L1(−π, π),

aj Fourier coefficients of f :

aj =
1

2π

∫ π

−π

f(s)e−ı̂jsds, ı̂2 = −1, j ∈ Z.

The Toeplitz matrix Tn(f) is defined in this way

Tn(f) = [ar−k]
n
r,k=1 ,

f is known as a symbol or generating function of Tn(f).
If f is real valued function then the matrix Tn(f) is
Hermitian, i.e. aj = a−j.
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Tools for approximation: a.c.s.

Definition. Let {An} a given sequence of matrices,
An ∈ Mdn

(C), dn < dn+1.
{{Bn,m}}m, m ∈ N is an approximating class of sequences
(a.c.s.) for {An} if

An = Bn,m + Rn,m + Nn,m, ∀n > nm, ∀m ∈ N,

Rank(Rn,m) ≤ dnc(m), ‖Nn,m‖ ≤ w(m),

where nm ≥ 0, c(m) and w(m) are functions that depend
only on m and

lim
m→∞

w(m) = 0, lim
m→∞

c(m) = 0.
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Definitions

Definition. Given a measurable complex-valued function θ
defined on a Lebesgue measurable set G, the essential
range of θ is the set S(θ) of points s ∈ C such that, for every
ǫ > 0, the Lebesgue measure of the set
θ(−1)(D(s, ǫ)) := {t ∈ G : θ(t) ∈ D(s, ǫ)} is positive. The
function θ is essentially bounded if its essential range is
bounded.
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Definitions

Definition. Given a measurable complex-valued function θ
defined on a Lebesgue measurable set G, the essential
range of θ is the set S(θ) of points s ∈ C such that, for every
ǫ > 0, the Lebesgue measure of the set
θ(−1)(D(s, ǫ)) := {t ∈ G : θ(t) ∈ D(s, ǫ)} is positive. The
function θ is essentially bounded if its essential range is
bounded.

Definition. A matrix sequence {An} (An ∈ Mdn
(C),

dn < dn+1) is weakly clustered at a non empty closed set
S ⊂ C (in the eigenvalue sense) if for any ǫ > 0

#{j : λj(An) /∈ D(S, ǫ)} = o(dn), n → ∞,

where D(S, ǫ) :=
⋃

s∈S D(s, ǫ) and D(s, ǫ) := {z : |z − s| < ǫ}.
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The result of Tilli

Szegö Theorem. Let f be a real valued integrable function
over Q = [−π, π), if {Tn(f)} is the sequence of Toeplitz
matrices generated by f , then it holds

{Tn(f)} ∼λ (f,Q).
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