

Tools for analyzing the Spectral Distribution in a non Hermitian context

Debora Sesana

Department of Physics and Mathematics

University of "Insubria" - Como

definition of distribution in the sense of the eigenvalues for a sequence of matrices;

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

$$A_n \}, A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1},$$

- $\{A_n\}, A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1},$
- θ measurable function on $K \subset \mathbb{C}^t$, $t \geq 1$,

- $\{A_n\}, A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1},$
- θ measurable function on $K \subset \mathbb{C}^t$, $t \geq 1$,
- $0 < \mu\{K\} < \infty$, $\mu\{\cdot\}$ Lebesgue measure,

- $\{A_n\}, A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1},$
- θ measurable function on $K \subset \mathbb{C}^t$, $t \geq 1$,
- $0 < \mu\{K\} < \infty$, $\mu\{\cdot\}$ Lebesgue measure,
- $F \in \mathcal{C}_c(\mathbb{C})$ (continuous functions with bounded support),

- $\{A_n\}, A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1},$
- θ measurable function on $K \subset \mathbb{C}^t$, $t \geq 1$,
- $0 < \mu\{K\} < \infty$, $\mu\{\cdot\}$ Lebesgue measure,
- $F \in \mathcal{C}_c(\mathbb{C})$ (continuous functions with bounded support),

- $\{A_n\}, A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1},$
- θ measurable function on $K \subset \mathbb{C}^t$, $t \geq 1$,
- $0 < \mu\{K\} < \infty$, $\mu\{\cdot\}$ Lebesgue measure,
- $F \in \mathcal{C}_c(\mathbb{C})$ (continuous functions with bounded support),

Definition. The matrix sequence $\{A_n\}$ is *distributed in the* sense of the eigenvalues as the function θ on the set K (in symbols $\{A_n\} \sim_{\lambda} (\theta, K)$) if

$$\lim_{n \to \infty} \Sigma_{\lambda}(F, A_n) = \frac{1}{\mu\{K\}} \int_K F(\theta(s)) \, ds, \quad \forall F \in \mathcal{C}_c(\mathbb{C}).$$

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

 analysis on the convergence of conjugate gradient methods (Beckermann, Kuijlaars);

- analysis on the convergence of conjugate gradient methods (Beckermann, Kuijlaars);
- applications in statistics (Bercu, Gamboa,...);

- analysis on the convergence of conjugate gradient methods (Beckermann, Kuijlaars);
- applications in statistics (Bercu, Gamboa,...);
- support for wireless communications (Gutierrez, Crespo, Najim, Gray,...);

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

•
$$f \in L^1(-\pi,\pi)$$
,

- $f \in L^1(-\pi,\pi)$,
- a_j Fourier coefficients of f:

•
$$f \in L^1(-\pi,\pi)$$
,

• a_j Fourier coefficients of f:

$$a_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)e^{-\hat{i}js} ds, \qquad \hat{i}^2 = -1, \qquad j \in \mathbb{Z}.$$

•
$$f \in L^1(-\pi,\pi)$$
,

• a_j Fourier coefficients of f:

$$a_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)e^{-\hat{i}js} ds, \qquad \hat{i}^2 = -1, \qquad j \in \mathbb{Z}.$$

The *Toeplitz matrix* $T_n(f)$ is defined in this way

$$T_n(f) = \begin{pmatrix} a_0 & a_{-1} & \cdots & a_{-(n-2)} & a_{-(n-1)} \\ a_1 & \cdots & \cdots & a_{-(n-2)} \\ \vdots & \ddots & \ddots & \vdots \\ a_{n-2} & \cdots & \cdots & a_{1} & a_{0} \end{pmatrix}$$

•
$$f \in L^1(-\pi,\pi)$$
,

• a_j Fourier coefficients of f:

$$a_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)e^{-\hat{i}js} ds, \qquad \hat{i}^2 = -1, \qquad j \in \mathbb{Z}.$$

The *Toeplitz matrix* $T_n(f)$ is defined in this way

$$T_n(f) = \begin{pmatrix} a_0 & a_{-1} & \cdots & a_{-(n-2)} & a_{-(n-1)} \\ a_1 & \ddots & \ddots & \vdots \\ a_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{n-2} & \ddots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \end{pmatrix} = [a_{r-k}]_{r,k=1}^n,$$

•
$$f \in L^1(-\pi,\pi)$$
,

• a_j Fourier coefficients of f:

$$a_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)e^{-\hat{i}js} ds, \qquad \hat{i}^2 = -1, \qquad j \in \mathbb{Z}.$$

The *Toeplitz matrix* $T_n(f)$ is defined in this way

$$T_n(f) = [a_{r-k}]_{r,k=1}^n$$

f is known as a symbol or generating function of $T_n(f)$.

- $f \in L^1(-\pi,\pi)$,
- a_j Fourier coefficients of f:

$$a_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s)e^{-ijs} ds, \qquad \hat{\imath}^2 = -1, \qquad j \in \mathbb{Z}.$$

The *Toeplitz matrix* $T_n(f)$ is defined in this way

$$T_n(f) = [a_{r-k}]_{r,k=1}^n$$
,

f is known as a symbol or generating function of $T_n(f)$. If f is real valued function then the matrix $T_n(f)$ is Hermitian, i.e. $a_j = \overline{a_{-j}}$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$\{T_n(f)\}\sim_{\lambda} (f,Q).$$

Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$\{T_n(f)\}\sim_{\lambda} (f,Q).$$

f real valued function $\Rightarrow T_n(f)$ Hermitian matrix.

Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$\{T_n(f)\}\sim_{\lambda} (f,Q).$$

f real valued function $\Rightarrow T_n(f)$ Hermitian matrix.

Tools for approximation:

Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$\{T_n(f)\}\sim_{\lambda} (f,Q).$$

f real valued function $\Rightarrow T_n(f)$ Hermitian matrix.

Tools for approximation:

definition of approximating class of sequences;

Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$\{T_n(f)\}\sim_{\lambda} (f,Q).$$

f real valued function $\Rightarrow T_n(f)$ Hermitian matrix.

Tools for approximation:

- definition of approximating class of sequences;
- main theorem of distribution;

Tools for approximation: a.c.s.

Tools for approximation: a.c.s.

Definition. Let $\{A_n\}$ a given sequence of matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}.$$
 $\{\{B_{n,m}\}\}_m, m \in \mathbb{N} \text{ is an approximating class of sequences}$ $(a.c.s.)$ for $\{A_n\}$ if

$$A_n = B_{n,m} + R_{n,m} + N_{n,m}, \quad \forall n > n_m, \, \forall m \in \mathbb{N},$$

$$Rank(R_{n,m}) \le d_n c(m), \quad ||N_{n,m}|| \le w(m),$$

where $n_m \ge 0, c(m)$ and w(m) are functions that depend only on m and

$$\lim_{m \to \infty} w(m) = 0, \qquad \lim_{m \to \infty} c(m) = 0.$$

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}.$$

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}.$$

•
$$\{\{B_{n,m}\}\}_m$$
, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, $a.c.s.$ for $\{A_n\}$,

$$\{\{B_{n,m}\}\}_m \xrightarrow{a.c.s.} \{A_n\}$$
 assumption 1

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}$$
.

- $\{\{B_{n,m}\}\}_m$, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, a.c.s. for $\{A_n\}$,
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K)$, f_m real valued function,

$$\{\{B_{n,m}\}\}_m \xrightarrow{a.c.s.} \{A_n\}$$
 assumption 1
$$\sim_\lambda \int \text{assumption 2}$$

$$\{f_m\}_m$$

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}.$$

- $\{\{B_{n,m}\}\}_m$, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, a.c.s. for $\{A_n\}$,
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K)$, f_m real valued function,
- $f_m \xrightarrow[m \to \infty]{\mu} f$,

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}$$
.

- $\{\{B_{n,m}\}\}_m$, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, a.c.s. for $\{A_n\}$,
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K)$, f_m real valued function,
- $f_m \xrightarrow[m \to \infty]{\mu} f$,

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Theorem. Let $\{B_n\}$ and $\{E_n\}$ be two matrix sequences $(B_n, E_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$, if

• B_n are Hermitian and $A_n = B_n + E_n$,

- B_n are Hermitian and $A_n = B_n + E_n$,
- $\{B_n\} \sim_{\lambda} (\theta, G)$,

- B_n are Hermitian and $A_n = B_n + E_n$,
- $\{B_n\} \sim_{\lambda} (\theta, G)$,
- $\sup_n \|B_n\| = \widetilde{C}$, $\sup_n \|E_n\| = \widehat{C}$, \widetilde{C} , \widehat{C} constants independent of n,

- B_n are Hermitian and $A_n = B_n + E_n$,
- $\{B_n\} \sim_{\lambda} (\theta, G)$,
- $\sup_n \|B_n\| = \widetilde{C}$, $\sup_n \|E_n\| = \widehat{C}$, \widetilde{C} , \widehat{C} constants independent of n,
- $||E_n||_1 = o(d_n), n \to \infty,$

Theorem. Let $\{B_n\}$ and $\{E_n\}$ be two matrix sequences $(B_n, E_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$, if

- B_n are Hermitian and $A_n = B_n + E_n$,
- $\{B_n\} \sim_{\lambda} (\theta, G)$,
- $\sup_n \|B_n\| = \widetilde{C}$, $\sup_n \|E_n\| = \widehat{C}$, \widetilde{C} , \widehat{C} constants independent of n,
- $||E_n||_1 = o(d_n), n \to \infty,$

then θ is real valued and $\{A_n\} \sim_{\lambda} (\theta, G)$.

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}$$
.

- $\{\{B_{n,m}\}\}_m$, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, a.c.s. for $\{A_n\}$,
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K)$, f_m real valued function,

$$f_{m} \xrightarrow{\mu} f,$$

$$\{\{B_{n,m}\}\}_{m} \xrightarrow{a.c.s.} \{A_{n}\}$$

$$\sim_{\lambda} \downarrow \text{assumption 2} \qquad \text{thesis} \downarrow \sim_{\lambda}$$

$$\{f_{m}\}_{m} \xrightarrow{m \to \infty} f$$

$$assumption 3$$

Theorem. Let $\{A_n\}$ be a sequence of \forall matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}$$
.

- $\{\{B_{n,m}\}\}_m$, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, a.c.s. for $\{A_n\}$,
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K)$, f_m real valued function,
- $f_m \xrightarrow[m \to \infty]{\mu} f$,

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}$$
.

- $\{\{B_{n,m}\}\}_m, m \in \mathbb{N}, B_{n,m} \text{ Hermitian, } a.c.s. \text{ for } \{A_n\},$
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K)$, f_m real valued function,
- $f_m \xrightarrow[m \to \infty]{\mu} f$,
- $\sup_m \sup_n \|B_{n,m}\| = \widetilde{C}$, $\widetilde{C}, \widehat{C}$ constants,

$$\sup_m \sup_n \|B_{n,m}\| = \widetilde{C},$$
 $\widetilde{C}, \widehat{C}$ constants, $\sup_m \sup_n \|E_{n,m}\| = \widehat{C},$ where $E_{n,m} = A_n - B_{n,m},$

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}.$$

- $\{\{B_{n,m}\}\}_m$, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, a.c.s. for $\{A_n\}$,
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K)$, f_m real valued function,
- $f_m \xrightarrow[m \to \infty]{\mu} f$,
- $\sup_{m} \sup_{n} \|B_{n,m}\| = \widetilde{C},$ $\widetilde{C}, \widehat{C}$ constants, $\sup_{m} \sup_{n} \|E_{n,m}\| = \widehat{C},$ where $E_{n,m} = A_n B_{n,m},$
- \blacksquare $||E_{n,m}||_1 \le c(m)d_n$, with $c(m) \xrightarrow[m \to \infty]{} 0$,

Theorem. Let $\{A_n\}$ be a sequence of Hermitian matrices,

$$A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1}.$$

Under the following assumptions:

- $\{\{B_{n,m}\}\}_m$, $m \in \mathbb{N}$, $B_{n,m}$ Hermitian, a.c.s. for $\{A_n\}$,
- $\{B_{n,m}\} \sim_{\lambda} (f_m, K), f_m \text{ real valued function,}$
- $f_m \xrightarrow[m \to \infty]{\mu} f$,
- $\sup_{m} \sup_{n} \|B_{n,m}\| = \widetilde{C},$ $\widetilde{C}, \widehat{C}$ constants, $\sup_{m} \sup_{n} \|E_{n,m}\| = \widehat{C},$ where $E_{n,m} = A_n B_{n,m},$
- $||E_{n,m}||_1 \le c(m)d_n$, with $c(m) \xrightarrow[m \to \infty]{} 0$,

then f is real valued and $\{A_n\} \sim_{\lambda} (f, K)$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Definitions

Definitions

Definition. Given a measurable complex-valued function θ defined on a Lebesgue measurable set G, the *essential range* of θ is the set $S(\theta)$ of points $s \in \mathbb{C}$ such that, for every $\epsilon > 0$, the Lebesgue measure of the set $\theta^{(-1)}(D(s,\epsilon)) := \{t \in G : \theta(t) \in D(s,\epsilon)\}$ is positive. The function θ is essentially bounded if its essential range is bounded.

Definitions

Definition. Given a measurable complex-valued function θ defined on a Lebesgue measurable set G, the *essential range* of θ is the set $S(\theta)$ of points $s \in \mathbb{C}$ such that, for every $\epsilon > 0$, the Lebesgue measure of the set $\theta^{(-1)}(D(s,\epsilon)) := \{t \in G : \theta(t) \in D(s,\epsilon)\}$ is positive. The function θ is essentially bounded if its essential range is bounded.

Definition. A matrix sequence $\{A_n\}$ $(A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$ is *weakly clustered* at a non empty closed set $S \subset \mathbb{C}$ (in the eigenvalue sense) if for any $\epsilon > 0$

$$\#\{j: \lambda_j(A_n) \notin D(S, \epsilon)\} = o(d_n), \quad n \to \infty,$$

where $D(S, \epsilon) := \bigcup_{s \in S} D(s, \epsilon)$ and $D(s, \epsilon) := \{z : |z - s| < \epsilon\}$.

The result of Tilli

Szegö Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$\{T_n(f)\}\sim_{\lambda} (f,Q).$$

Tilli Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, and if

then $\{T_n(f)\} \sim_{\lambda} (f,Q)$.

Tilli Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q = [-\pi, \pi),$

then $\{T_n(f)\} \sim_{\lambda} (f,Q)$.

Tilli Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, and if

•
$$f \in L^{\infty}(Q), Q = [-\pi, \pi),$$

 $m{\mathcal{S}}(f)$ has empty interior,

then
$$\{T_n(f)\} \sim_{\lambda} (f,Q)$$
.

Tilli Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q = [-\pi, \pi),$
- $m{\mathcal{S}}(f)$ has empty interior,
- S(f) does not separate \mathbb{C} ,

then
$$\{T_n(f)\} \sim_{\lambda} (f,Q)$$
.

Tilli Theorem. Let f be a real valued integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q = [-\pi, \pi),$
- $m{\mathcal{S}}(f)$ has empty interior,
- S(f) does not separate \mathbb{C} ,

then $\{T_n(f)\}\sim_{\lambda} (f,Q)$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Theorem. Let $\{A_n\}$ be a matrix sequence $(A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$ and S a subset of \mathbb{C} . If:

(a1) S is a compact set and $\mathbb{C}\backslash S$ is connected;

- **(a1)** S is a compact set and $\mathbb{C}\backslash S$ is connected;
- (a2) $\{A_n\}$ is weakly clustered at S;

- **(a1)** S is a compact set and $\mathbb{C}\backslash S$ is connected;
- (a2) $\{A_n\}$ is weakly clustered at S;
- (a3) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;

- **(a1)** S is a compact set and $\mathbb{C}\backslash S$ is connected;
- \blacksquare (a2) $\{A_n\}$ is weakly clustered at S;
- (a3) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

- **9** (a1) S is a compact set and $\mathbb{C}\backslash S$ is connected;
- (a2) $\{A_n\}$ is weakly clustered at S;
- (a3) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

- **(a1)** S is a compact set and $\mathbb{C}\backslash S$ is connected;
- (a2) $\{A_n\}$ is weakly clustered at S;
- (a3) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n\to\infty}\sum_{\lambda\in\Lambda}\frac{F(\lambda)}{d_n}=\frac{1}{\mu\{G\}}\int_G F(\theta(t))\mathrm{d}t,\quad\forall\, F\text{ polynomial},$$

Theorem. Let $\{A_n\}$ be a matrix sequence $(A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$ and S a subset of \mathbb{C} . If:

- **9** (a1) S is a compact set and $\mathbb{C}\backslash S$ is connected;
- (a2) $\{A_n\}$ is weakly clustered at S;
- (a3) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

9 (a5) the essential range of θ is contained in S;

- **(a1)** S is a compact set and $\mathbb{C}\backslash S$ is connected;
- (a2) $\{A_n\}$ is weakly clustered at S;
- (a3) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

- **9** (a5) the essential range of θ is contained in S;
- \blacksquare (a6) the interior of S is empty;

Theorem. Let $\{A_n\}$ be a matrix sequence $(A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$ and S a subset of \mathbb{C} . If:

- **9** (a1) S is a compact set and $\mathbb{C}\backslash S$ is connected;
- (a2) $\{A_n\}$ is weakly clustered at S;
- (a3) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

- **9** (a5) the essential range of θ is contained in S;
- \blacksquare (a6) the interior of S is empty;

then $\{A_n\} \sim_{\lambda} (\theta, G)$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
 - Hermitian case:
 - Szegö theorem;
 - new results;
 - non Hermitian case:
 - results of Tilli;
 - generalizations and results of Golinskii and Serra-Capizzano;
 - new results.

Theorem. Let $\{A_n\}$ be a matrix sequence $(A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$. If:

• (c1) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;

- (c1) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

- (c1) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n\to\infty}\sum_{\mathbf{K}}\frac{F(\lambda)}{d_n}=\frac{1}{\mu\{G\}}\int_G F(\theta(t))\mathrm{d}t,\quad\forall\, F\text{ polynomial},$$

- (c1) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

Theorem. Let $\{A_n\}$ be a matrix sequence $(A_n \in M_{d_n}(\mathbb{C}), d_n < d_{n+1})$. If:

- (c1) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

• (c3) there exist a constant \hat{C} and a positive number $p \in [1, \infty)$, independent of n, such that $\|P(A_n)\|_p^p \leq \frac{\hat{C}n}{\mu\{G\}} \int_G |P(\theta(t))|^p dt$, $\forall P$ fixed polynomial independent of n and $\forall n$ large enough;

- (c1) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

- (c3) there exist a constant \hat{C} and a positive number $p \in [1, \infty)$, independent of n, such that $\|P(A_n)\|_p^p \leq \frac{\hat{C}n}{\mu\{G\}} \int_G |P(\theta(t))|^p dt$, $\forall P$ fixed polynomial independent of n and $\forall n$ large enough;
- **9** (c4) $\mathbb{C}\setminus\mathcal{S}(\theta)$ is connected and the interior of $\mathcal{S}(\theta)$ is empty;

- (c1) the spectra Λ_n of A_n are uniformly bounded, i.e. $\exists C \in \mathbb{R}^+$ such that $|\lambda| < C$, $\lambda \in \Lambda_n$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$\lim_{n \to \infty} \frac{tr(A_n^L)}{d_n} = \frac{1}{\mu\{G\}} \int_G \theta^L(t) dt, \quad \forall L \in \mathbb{N}^+,$$

- (c3) there exist a constant \hat{C} and a positive number $p \in [1, \infty)$, independent of n, such that $\|P(A_n)\|_p^p \leq \frac{\hat{C}n}{\mu\{G\}} \int_G |P(\theta(t))|^p \mathrm{d}t$, $\forall P$ fixed polynomial independent of n and $\forall n$ large enough;
- (c4) $\mathbb{C}\setminus\mathcal{S}(\theta)$ is connected and the interior of $\mathcal{S}(\theta)$ is empty; then $\{A_n\}\sim_{\lambda}(\theta,G)$.

Tilli Theorem. Let f be a integrable function over $Q = [-\pi, \pi)$, if $\{T_n(f)\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q = [-\pi, \pi),$
- $m{\mathcal{S}}(f)$ has empty interior,
- S(f) does not separate \mathbb{C} ,

then $\{T_n(f)\}\sim_{\lambda} (f,Q)$.

Result for real valued functions

Result for real valued functions

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. Then $\{A_n\} \sim_{\lambda} (h, Q)$ with $A_n = T_n(f)T_n(g)$, and S(h) is a weak cluster for $\{A_n\}$.

Result for real valued functions

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. Then $\{A_n\} \sim_{\lambda} (h, Q)$ with $A_n = T_n(f)T_n(g)$, and S(h) is a weak cluster for $\{A_n\}$.

Lemma. Let $f, g \in L^{\infty}(Q)$, $A_n = T_n(f)T_n(g)$, and h = fg. Then

$$||A_n - T_n(h)||_1 = o(n),$$

$$\lim_{n \to \infty} \frac{tr(A_n)}{d_n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(t) dt.$$

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. Then $\{A_n\} \sim_{\lambda} (h, Q)$ with $A_n = T_n(f)T_n(g)$, and S(h) is a weak cluster for $\{A_n\}$.

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. Then $\{A_n\} \sim_{\lambda} (h, Q)$ with $A_n = T_n(f)T_n(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\{A_n\}$.

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. If

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. If

- $h \in L^{\infty}(Q), Q = [-\pi, \pi),$

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. If

- $h \in L^{\infty}(Q), Q = [-\pi, \pi),$
- $m{\mathcal{S}}(h)$ has empty interior,

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. If

- $h \in L^{\infty}(Q), Q = [-\pi, \pi),$
- $m{\mathcal{S}}(h)$ has empty interior,
- S(h) does not separate \mathbb{C} ,

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that h = fg is real valued. If

- $h \in L^{\infty}(Q), Q = [-\pi, \pi),$
- $m{\mathcal{S}}(h)$ has empty interior,
- S(h) does not separate \mathbb{C} ,

Bibliography

- ▶ L. Golinskii and S. Serra-Capizzano, The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences, J. Approx. Theory, 144-1 (2007), pp. 84–102.
- S. Serra Capizzano, D. Sesana, E. Strouse, The eigenvalue distribution of products of Toeplitz matrices clustering and attraction, Studia Math., under revision.
- S. Serra Capizzano, D. Sesana, Tools for the eigenvalue distribution in a non-Hermitian setting, LAA, in print.
- P. Tilli, Some results on complex Toeplitz eigenvalues, J. Math. Anal. Appl., 239-2 (1999), pp. 390–401.