Tools for analyzing the Spectral Distribution in a non Hermitian context

Debora Sesana
Department of Physics and Mathematics
University of "Insubria" - Como

Contents

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano; - new results.

Distribution in the sense of the eigenvalues

Distribution in the sense of the eigenvalues

- $\left\{A_{n}\right\}, A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$,

Distribution in the sense of the eigenvalues

- $\left\{A_{n}\right\}, A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$,
- θ measurable function on $K \subset \mathbb{C}^{t}, t \geq 1$,

Distribution in the sense of the eigenvalues

- $\left\{A_{n}\right\}, A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$,
- θ measurable function on $K \subset \mathbb{C}^{t}, t \geq 1$,
- $0<\mu\{K\}<\infty, \mu\{\cdot\}$ Lebesgue measure,

Distribution in the sense of the eigenvalues

- $\left\{A_{n}\right\}, A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$,
- θ measurable function on $K \subset \mathbb{C}^{t}, t \geq 1$,
- $0<\mu\{K\}<\infty, \mu\{\cdot\}$ Lebesgue measure,
- $F \in \mathcal{C}_{c}(\mathbb{C})$ (continuous functions with bounded support),

Distribution in the sense of the eigenvalues

- $\left\{A_{n}\right\}, A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$,
- θ measurable function on $K \subset \mathbb{C}^{t}, t \geq 1$,
- $0<\mu\{K\}<\infty, \mu\{\cdot\}$ Lebesgue measure,
- $F \in \mathcal{C}_{c}(\mathbb{C})$ (continuous functions with bounded support),
- $\Sigma_{\lambda}\left(F, A_{n}\right)=\frac{1}{d_{n}} \sum_{j=1}^{d_{n}} F\left[\lambda_{j}\left(A_{n}\right)\right]$.

Distribution in the sense of the eigenvalues

- $\left\{A_{n}\right\}, A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$,
- θ measurable function on $K \subset \mathbb{C}^{t}, t \geq 1$,
- $0<\mu\{K\}<\infty, \mu\{\cdot\}$ Lebesgue measure,
- $F \in \mathcal{C}_{c}(\mathbb{C})$ (continuous functions with bounded support),
- $\Sigma_{\lambda}\left(F, A_{n}\right)=\frac{1}{d_{n}} \sum_{j=1}^{d_{n}} F\left[\lambda_{j}\left(A_{n}\right)\right]$.

Definition. The matrix sequence $\left\{A_{n}\right\}$ is distributed in the sense of the eigenvalues as the function θ on the set K (in symbols $\left\{A_{n}\right\} \sim_{\lambda}(\theta, K)$ if

$$
\lim _{n \rightarrow \infty} \Sigma_{\lambda}\left(F, A_{n}\right)=\frac{1}{\mu\{K\}} \int_{K} F(\theta(s)) \mathrm{d} s, \quad \forall F \in \mathcal{C}_{c}(\mathbb{C}) .
$$

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.
- analysis on the convergence of conjugate gradient methods (Beckermann, Kuijlaars);
- analysis on the convergence of conjugate gradient methods (Beckermann, Kuijlaars);
- applications in statistics (Bercu, Gamboa,...);
- analysis on the convergence of conjugate gradient methods (Beckermann, Kuijlaars);
- applications in statistics (Bercu, Gamboa,...);
- support for wireless communications (Gutierrez, Crespo, Najim, Gray,...);

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Toeplitz matrices

Toeplitz matrices

- $f \in L^{1}(-\pi, \pi)$,

Toeplitz matrices

- $f \in L^{1}(-\pi, \pi)$,
- a_{j} Fourier coefficients of f :

Toeplitz matrices

- $f \in L^{1}(-\pi, \pi)$,
- a_{j} Fourier coefficients of f :

$$
a_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-\hat{\imath} j s} \mathrm{~d} s, \quad \hat{\imath}^{2}=-1, \quad j \in \mathbb{Z}
$$

Toeplitz matrices

- $f \in L^{1}(-\pi, \pi)$,
- a_{j} Fourier coefficients of f :

$$
a_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-\hat{\imath} j s} \mathrm{~d} s, \quad \hat{\imath}^{2}=-1, \quad j \in \mathbb{Z}
$$

The Toeplitz matrix $T_{n}(f)$ is defined in this way

$$
T_{n}(f)=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & \cdots & a_{-(n-2)} & a_{-(n-1)} \\
a_{1} & \ddots & \ddots & \ddots & a_{-(n-2)} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
& \ddots & \ddots & \ddots & a_{-1} \\
a_{n-2} & a_{n-2} & \cdots & a_{1} & a_{0}
\end{array}\right)
$$

Toeplitz matrices

- $f \in L^{1}(-\pi, \pi)$,
- a_{j} Fourier coefficients of f :

$$
a_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-\hat{\imath} j s} \mathrm{~d} s, \quad \hat{\imath}^{2}=-1, \quad j \in \mathbb{Z}
$$

The Toeplitz matrix $T_{n}(f)$ is defined in this way

$$
T_{n}(f)=\left(\begin{array}{ccccc}
a_{0} & a_{-1} & \cdots & a_{-(n-2)} & a_{-(n-1)} \\
a_{1} & \ddots & \ddots & \ddots & a_{-(n-2)} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
& \ddots & \ddots & \ddots & a_{-1} \\
a_{n-2} & a_{n-2} & \cdots & a_{1} & a_{0}
\end{array}\right)=\left[a_{r-k}\right]_{r, k=1}^{n}
$$

Toeplitz matrices

- $f \in L^{1}(-\pi, \pi)$,
- a_{j} Fourier coefficients of f :

$$
a_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-\hat{\imath} j s} \mathrm{~d} s, \quad \hat{\imath}^{2}=-1, \quad j \in \mathbb{Z}
$$

The Toeplitz matrix $T_{n}(f)$ is defined in this way

$$
T_{n}(f)=\left[a_{r-k}\right]_{r, k=1}^{n},
$$

f is known as a symbol or generating function of $T_{n}(f)$.

Toeplitz matrices

- $f \in L^{1}(-\pi, \pi)$,
- a_{j} Fourier coefficients of f :

$$
a_{j}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-\hat{\imath} j s} \mathrm{~d} s, \quad \hat{\imath}^{2}=-1, \quad j \in \mathbb{Z}
$$

The Toeplitz matrix $T_{n}(f)$ is defined in this way

$$
T_{n}(f)=\left[a_{r-k}\right]_{r, k=1}^{n},
$$

f is known as a symbol or generating function of $T_{n}(f)$. If f is real valued function then the matrix $T_{n}(f)$ is Hermitian, i.e. $a_{j}=\overline{a_{-j}}$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Theorem of Szegö, Tyrtyshnikov, Zamarashkin and Tilli

Theorem of Szegö, Tyrtyshnikov, Zamarashkin and Tilli

Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$
\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q)
$$

Theorem of Szegö, Tyrtyshnikov, Zamarashkin and Tilli

Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$
\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q) .
$$

f real valued function $\Rightarrow T_{n}(f)$ Hermitian matrix.

Theorem of Szegö, Tyrtyshnikov, Zamarashkin and Tilli

Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$
\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q) .
$$

f real valued function $\Rightarrow T_{n}(f)$ Hermitian matrix.
Tools for approximation:

Theorem of Szegö, Tyrtyshnikov, Zamarashkin and Tilli

Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$
\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q) .
$$

f real valued function $\Rightarrow T_{n}(f)$ Hermitian matrix.
Tools for approximation:

- definition of approximating class of sequences;

Theorem of Szegö, Tyrtyshnikov, Zamarashkin and Tilli

Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$
\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q) .
$$

f real valued function $\Rightarrow T_{n}(f)$ Hermitian matrix.
Tools for approximation:

- definition of approximating class of sequences;
- main theorem of distribution;

Tools for approximation: a.c.s.

Tools for approximation: a.c.s.

Definition. Let $\left\{A_{n}\right\}$ a given sequence of matrices,
$A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
$\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}$ is an approximating class of sequences (a.c.s.) for $\left\{A_{n}\right\}$ if

$$
\begin{gathered}
A_{n}=B_{n, m}+R_{n, m}+N_{n, m}, \quad \forall n>n_{m}, \forall m \in \mathbb{N}, \\
\operatorname{Rank}\left(R_{n, m}\right) \leq d_{n} c(m), \quad\left\|N_{n, m}\right\| \leq w(m),
\end{gathered}
$$

where $n_{m} \geq 0, c(m)$ and $w(m)$ are functions that depend only on m and

$$
\lim _{m \rightarrow \infty} w(m)=0, \quad \lim _{m \rightarrow \infty} c(m)=0 .
$$

Theorem of distribution

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
Under the following assumptions:

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,

$$
\left\{\left\{B_{n, m}\right\}\right\}_{m} \xrightarrow[\text { assumption } 1]{\text { a.c.s. }}\left\{A_{n}\right\}
$$

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$. Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,

$$
\begin{aligned}
& \left\{\left\{B_{n, m}\right\}\right\}_{m} \frac{a . c . s .}{\text { assumption } 1}\left\{A_{n}\right\} \\
& \quad \sim_{\lambda} \downarrow_{\text {assumption } 2} \\
& \quad\left\{f_{m}\right\}_{m}
\end{aligned}
$$

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$. Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,
$\rho f_{m} \xrightarrow[m \rightarrow \infty]{\mu} f$,

$$
\begin{aligned}
& \left\{\left\{B_{n, m}\right\}\right\}_{m} \frac{\text { a.c.s. }}{\text { assumption } 1}\left\{A_{n}\right\} \\
& \sim_{\lambda} \downarrow_{\text {assumption } 2} \\
& \left\{f_{m}\right\}_{m} \frac{\text { in measure }}{m \rightarrow \infty}
\end{aligned}
$$

assumption 3

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$. Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,
$f_{m} \xrightarrow[m \longrightarrow \infty]{\mu} f$,

$$
\begin{gathered}
\left\{\left\{B_{n, m}\right\}\right\}_{m} \frac{\text { a.c.s. }}{\text { assumption } 1} \rightarrow\left\{A_{n}\right\} \\
\sim_{\lambda} \downarrow \text { assumption } 2 \\
\left\{f_{m}\right\}_{m} \frac{\text { in measure }}{m \rightarrow \infty} \downarrow \sim_{\lambda}
\end{gathered}
$$

assumption 3

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Result of Golinskii and Serra-Capizzano

Result of Golinskii and Serra-Capizzano

Theorem. Let $\left\{B_{n}\right\}$ and $\left\{E_{n}\right\}$ be two matrix sequences ($B_{n}, E_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$), if

Result of Golinskii and Serra-Capizzano

Theorem. Let $\left\{B_{n}\right\}$ and $\left\{E_{n}\right\}$ be two matrix sequences $\left(B_{n}, E_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}\right)$, if

- B_{n} are Hermitian and $A_{n}=B_{n}+E_{n}$,

Result of Golinskii and Serra-Capizzano

Theorem. Let $\left\{B_{n}\right\}$ and $\left\{E_{n}\right\}$ be two matrix sequences $\left(B_{n}, E_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}\right)$, if

- B_{n} are Hermitian and $A_{n}=B_{n}+E_{n}$,
- $\left\{B_{n}\right\} \sim_{\lambda}(\theta, G)$,

Result of Golinskii and Serra-Capizzano

Theorem. Let $\left\{B_{n}\right\}$ and $\left\{E_{n}\right\}$ be two matrix sequences
$\left(B_{n}, E_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}\right)$, if

- B_{n} are Hermitian and $A_{n}=B_{n}+E_{n}$,
- $\left\{B_{n}\right\} \sim_{\lambda}(\theta, G)$,
- $\sup _{n}\left\|B_{n}\right\|=\widetilde{C}, \quad \sup _{n}\left\|E_{n}\right\|=\widehat{C}$,
$\widetilde{C}, \widehat{C}$ constants independent of n,

Result of Golinskii and Serra-Capizzano

Theorem. Let $\left\{B_{n}\right\}$ and $\left\{E_{n}\right\}$ be two matrix sequences $\left(B_{n}, E_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}\right)$, if

- B_{n} are Hermitian and $A_{n}=B_{n}+E_{n}$,
- $\left\{B_{n}\right\} \sim_{\lambda}(\theta, G)$,
- $\sup _{n}\left\|B_{n}\right\|=\widetilde{C}, \quad \sup _{n}\left\|E_{n}\right\|=\widehat{C}$,
$\widetilde{C}, \widehat{C}$ constants independent of n,
- $\left\|E_{n}\right\|_{1}=o\left(d_{n}\right), n \rightarrow \infty$,

Result of Golinskii and Serra-Capizzano

Theorem. Let $\left\{B_{n}\right\}$ and $\left\{E_{n}\right\}$ be two matrix sequences
$\left(B_{n}, E_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}\right)$, if

- B_{n} are Hermitian and $A_{n}=B_{n}+E_{n}$,
- $\left\{B_{n}\right\} \sim_{\lambda}(\theta, G)$,
- $\sup _{n}\left\|B_{n}\right\|=\widetilde{C}, \quad \sup _{n}\left\|E_{n}\right\|=\widehat{C}$,
$\widetilde{C}, \widehat{C}$ constants independent of n,
- $\left\|E_{n}\right\|_{1}=o\left(d_{n}\right), n \rightarrow \infty$,
then θ is real valued and $\left\{A_{n}\right\} \sim_{\lambda}(\theta, G)$.

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,
- $f_{m} \xrightarrow[m \rightarrow \infty]{\mu} f$,

$$
\begin{gathered}
\left\{\left\{B_{n, m}\right\}\right\}_{m} \frac{\text { a.c.s. }}{\text { assumption } 1} \rightarrow \\
\sim_{\lambda} \downarrow \text { assumption } 2 \\
\left\{A_{n}\right\} \\
\left\{f_{m}\right\}_{m} \xrightarrow{\text { in measure }} \quad \text { thesis } \downarrow \sim_{\lambda}
\end{gathered}
$$

$$
m \rightarrow \infty
$$

assumption 3

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,
- $f_{m} \xrightarrow[m \rightarrow \infty]{\mu} f$,

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,
- $f_{m} \xrightarrow[m \rightarrow \infty]{\mu} f$,
- $\sup _{m} \sup _{n}\left\|B_{n, m}\right\|=\widetilde{C}$,
$\widetilde{C}, \widehat{C}$ constants, $\sup _{m} \sup _{n}\left\|E_{n, m}\right\|=\widehat{C}$,
where $E_{n, m}=A_{n}-B_{n, m}$,

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,
- $f_{m} \xrightarrow[m \rightarrow \infty]{\mu} f$,
- $\sup _{m} \sup _{n}\left\|B_{n, m}\right\|=\widetilde{C}, \quad \widetilde{C}, \widehat{C}$ constants, $\sup _{m} \sup _{n}\left\|E_{n, m}\right\|=\widehat{C}, \quad$ where $E_{n, m}=A_{n}-B_{n, m}$,
- $\left\|E_{n, m}\right\|_{1} \leq c(m) d_{n}$, with $c(m) \xrightarrow[m \rightarrow \infty]{\longrightarrow} 0$,

Theorem of distribution

Theorem. Let $\left\{A_{n}\right\}$ be a sequence of Hermitian matrices, $A_{n} \in M_{d_{n}}(\mathbb{C}), d_{n}<d_{n+1}$.
Under the following assumptions:

- $\left\{\left\{B_{n, m}\right\}\right\}_{m}, m \in \mathbb{N}, B_{n, m}$ Hermitian, a.c.s. for $\left\{A_{n}\right\}$,
- $\left\{B_{n, m}\right\} \sim_{\lambda}\left(f_{m}, K\right), f_{m}$ real valued function,
- $f_{m} \xrightarrow[m \rightarrow \infty]{\mu} f$,
- $\sup _{m} \sup _{n}\left\|B_{n, m}\right\|=\widetilde{C}, \quad \widetilde{C}, \widehat{C}$ constants, $\sup _{m} \sup _{n}\left\|E_{n, m}\right\|=\widehat{C}, \quad$ where $E_{n, m}=A_{n}-B_{n, m}$,
- $\left\|E_{n, m}\right\|_{1} \leq c(m) d_{n}$, with $c(m) \xrightarrow[m \rightarrow \infty]{\longrightarrow} 0$,
then f is real valued and $\left\{A_{n}\right\} \sim_{\lambda}(f, K)$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
- Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Definitions

Definitions

Definition. Given a measurable complex-valued function θ defined on a Lebesgue measurable set G, the essential range of θ is the set $\mathcal{S}(\theta)$ of points $s \in \mathbb{C}$ such that, for every $\epsilon>0$, the Lebesgue measure of the set $\theta^{(-1)}(D(s, \epsilon)):=\{t \in G: \theta(t) \in D(s, \epsilon)\}$ is positive. The function θ is essentially bounded if its essential range is bounded.

Definitions

Definition. Given a measurable complex-valued function θ defined on a Lebesgue measurable set G, the essential range of θ is the set $\mathcal{S}(\theta)$ of points $s \in \mathbb{C}$ such that, for every $\epsilon>0$, the Lebesgue measure of the set $\theta^{(-1)}(D(s, \epsilon)):=\{t \in G: \theta(t) \in D(s, \epsilon)\}$ is positive. The function θ is essentially bounded if its essential range is bounded.

Definition. A matrix sequence $\left\{A_{n}\right\}\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$, $\left.d_{n}<d_{n+1}\right)$ is weakly clustered at a non empty closed set $S \subset \mathbb{C}$ (in the eigenvalue sense) if for any $\epsilon>0$

$$
\#\left\{j: \lambda_{j}\left(A_{n}\right) \notin D(S, \epsilon)\right\}=o\left(d_{n}\right), \quad n \rightarrow \infty,
$$

where $D(S, \epsilon):=\bigcup_{s \in S} D(s, \epsilon)$ and $D(s, \epsilon):=\{z:|z-s|<\epsilon\}$.

The result of Tilli

The result of Tilli

Szegö Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, then it holds

$$
\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q) .
$$

The result of Tilli

Tilli Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, and if
then $\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q)$.

The result of Tilli

Tilli Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q=[-\pi, \pi)$,
then $\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q)$.

The result of Tilli

Tilli Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q=[-\pi, \pi)$,
- $\mathcal{S}(f)$ has empty interior,
then $\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q)$.

The result of Tilli

Tilli Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q=[-\pi, \pi)$,
- $\mathcal{S}(f)$ has empty interior,
- $\mathcal{S}(f)$ does not separate \mathbb{C},
then $\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q)$.

The result of Tilli

Tilli Theorem. Let f be a real valued integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q=[-\pi, \pi)$,
- $\mathcal{S}(f)$ has empty interior,
- $\mathcal{S}(f)$ does not separate \mathbb{C},
then $\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q)$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Generalization of Golinskii and Serra-Capizzano

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;
- (a3) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;
- (a3) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;
- (a3) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+}
$$

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;
- (a3) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \sum_{\lambda \in \Lambda_{n}} \frac{F(\lambda)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} F(\theta(t)) \mathrm{d} t, \quad \forall F \text { polynomial }
$$

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$ and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;
- (a3) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+},
$$

- (a5) the essential range of θ is contained in S;

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$d_{n}<d_{n+1}$) and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;
- (a3) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+},
$$

- (a5) the essential range of θ is contained in S;
- (a6) the interior of S is empty;

Generalization of Golinskii and Serra-Capizzano

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$d_{n}<d_{n+1}$) and S a subset of \mathbb{C}. If:

- (a1) S is a compact set and $\mathbb{C} \backslash S$ is connected;
- (a2) $\left\{A_{n}\right\}$ is weakly clustered at S;
- (a3) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (a4) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+},
$$

- (a5) the essential range of θ is contained in S;
- (a6) the interior of S is empty;
then $\left\{A_{n}\right\} \sim_{\lambda}(\theta, G)$.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

Contents

- definition of distribution in the sense of the eigenvalues for a sequence of matrices;
- motivations;
- Toeplitz matrices;
- Hermitian case:
. Szegö theorem;
- new results;
- non Hermitian case:
- results of Tilli;
- generalizations and results of Golinskii and Serra-Capizzano;
- new results.

New results

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$. If:

New results
Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$d_{n}<d_{n+1}$). If:

- (c1) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;

New results

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$, $\left.d_{n}<d_{n+1}\right)$. If:

- (c1) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+}
$$

New results

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$, $\left.d_{n}<d_{n+1}\right)$. If:

- (c1) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \sum_{\lambda \in \Lambda_{n}} \frac{F(\lambda)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} F(\theta(t)) \mathrm{d} t, \quad \forall F \text { polynomial },
$$

New results

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$, $\left.d_{n}<d_{n+1}\right)$. If:

- (c1) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+}
$$

New results

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$. If:

- (c1) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+}
$$

- (c3) there exist a constant \hat{C} and a positive number $p \in[1, \infty)$, independent of n, such that $\left\|P\left(A_{n}\right)\right\|_{p}^{p} \leq \frac{\hat{C}_{n}}{\mu\{G\}} \int_{G}|P(\theta(t))|^{p} \mathrm{~d} t$, $\forall P$ fixed polynomial independent of n and $\forall n$ large enough;

New results

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$,
$\left.d_{n}<d_{n+1}\right)$. If:

- (c1) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+}
$$

- (c3) there exist a constant \hat{C} and a positive number $p \in[1, \infty)$, independent of n, such that $\left\|P\left(A_{n}\right)\right\|_{p}^{p} \leq \frac{\hat{C} n}{\mu\{G\}} \int_{G}|P(\theta(t))|^{p} \mathrm{~d} t$, $\forall P$ fixed polynomial independent of n and $\forall n$ large enough;
- (c4) $\mathbb{C} \backslash \mathcal{S}(\theta)$ is connected and the interior of $\mathcal{S}(\theta)$ is empty;

New results

Theorem. Let $\left\{A_{n}\right\}$ be a matrix sequence $\left(A_{n} \in M_{d_{n}}(\mathbb{C})\right.$, $\left.d_{n}<d_{n+1}\right)$. If:

- (c1) the spectra Λ_{n} of A_{n} are uniformly bounded, i.e. $\exists C \in \mathbb{R}^{+}$ such that $|\lambda|<C, \lambda \in \Lambda_{n}$, for all n;
- (c2) $\exists \theta$ measurable, bounded, defined on a set G of positive and finite Lebesgue measure, such that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}^{L}\right)}{d_{n}}=\frac{1}{\mu\{G\}} \int_{G} \theta^{L}(t) \mathrm{d} t, \quad \forall L \in \mathbb{N}^{+}
$$

- (c3) there exist a constant \hat{C} and a positive number $p \in[1, \infty)$, independent of n, such that $\left\|P\left(A_{n}\right)\right\|_{p}^{p} \leq \frac{\hat{C}_{n}}{\mu\{G\}} \int_{G}|P(\theta(t))|^{p} \mathrm{~d} t$, $\forall P$ fixed polynomial independent of n and $\forall n$ large enough;
- (c4) $\mathbb{C} \backslash \mathcal{S}(\theta)$ is connected and the interior of $\mathcal{S}(\theta)$ is empty; then $\left\{A_{n}\right\} \sim_{\lambda}(\theta, G)$.

The result of Tilli

Tilli Theorem. Let f be a integrable function over $Q=[-\pi, \pi)$, if $\left\{T_{n}(f)\right\}$ is the sequence of Toeplitz matrices generated by f, and if

- $f \in L^{\infty}(Q), Q=[-\pi, \pi)$,
- $\mathcal{S}(f)$ has empty interior,
- $\mathcal{S}(f)$ does not separate \mathbb{C},
then $\left\{T_{n}(f)\right\} \sim_{\lambda}(f, Q)$.

Result for real valued functions

Result for real valued functions

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is real valued. Then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Result for real valued functions

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is real valued. Then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Lemma. Let $f, g \in L^{\infty}(Q), A_{n}=T_{n}(f) T_{n}(g)$, and $h=f g$. Then

$$
\begin{aligned}
& \left\|A_{n}-T_{n}(h)\right\|_{1}=o(n), \\
& \lim _{n \rightarrow \infty} \frac{\operatorname{tr}\left(A_{n}\right)}{d_{n}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(t) \mathrm{d} t .
\end{aligned}
$$

Extension of the theorem of Tilli

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is real valued. Then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Extension of the theorem of Tilli

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is reat valued. Then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Extension of the theorem of Tilli

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is real valued. If
-
then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Extension of the theorem of Tilli

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is real valued. If

- $h \in L^{\infty}(Q), Q=[-\pi, \pi)$,
then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Extension of the theorem of Tilli

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is real valued. If

- $h \in L^{\infty}(Q), Q=[-\pi, \pi)$,
- $\mathcal{S}(h)$ has empty interior,
then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Extension of the theorem of Tilli

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is real valued. If

- $h \in L^{\infty}(Q), Q=[-\pi, \pi)$,
- $\mathcal{S}(h)$ has empty interior,
- $\mathcal{S}(h)$ does not separate \mathbb{C},
then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Extension of the theorem of Tilli

Theorem. Let $f, g \in L^{\infty}(Q)$ be such that $h=f g$ is reat valued. If

- $h \in L^{\infty}(Q), Q=[-\pi, \pi)$,
- $\mathcal{S}(h)$ has empty interior,
- $\mathcal{S}(h)$ does not separate \mathbb{C},
then $\left\{A_{n}\right\} \sim_{\lambda}(h, Q)$ with $A_{n}=T_{n}(f) T_{n}(g)$, and $\mathcal{S}(h)$ is a weak cluster for $\left\{A_{n}\right\}$.

Bibliography

- L. Golinskii and S. Serra-Capizzano, The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences, J. Approx. Theory, 144-1 (2007), pp. 84-102.
- S. Serra Capizzano, D. Sesana, E. Strouse, The eigenvalue distribution of products of Toeplitz matrices clustering and attraction, Studia Math., under revision.
- S. Serra Capizzano, D. Sesana, Tools for the eigenvalue distribution in a non-Hermitian setting, LAA, in print.
- P. Tilli, Some results on complex Toeplitz eigenvalues, J. Math. Anal. Appl., 239-2 (1999), pp. 390-401.

