Efficient reconstruction of functions on the sphere

from scattered data

Daniel Potts

Department of Mathematics Chemnitz Universitiy of Technology
email: potts@mathematik.tu-chemnitz.de
http://www.tu-chemnitz.de/~potts

CHEMNITZ UNIVERSITY
OF TECHNOLOGY

Content

- NFFT
- NFSFT
- Iterative reconstruction on \mathbb{S}^{2}
- Probabilistic arguments
numerical examples

NFFT (Dutt,Rokhlin;Beylkin; Steidl; P.,Steidl, Tasche)
fast computation of of the sums

$$
\begin{aligned}
f\left(\boldsymbol{v}_{j}\right) & =\sum_{k_{1}=-N / 2}^{N / 2-1} \cdots \sum_{k_{d}=-N / 2}^{N / 2-1} f_{k} \mathrm{e}^{-2 \pi i k v_{j}} \quad(j=-M / 2, \ldots, M / 2-1) \\
h(\boldsymbol{k}) & =\sum_{j=-M / 2}^{M / 2-1} f_{j} \mathrm{e}^{2 \pi i k v_{j}} \quad\left(-\frac{N}{2} \leq \boldsymbol{k}<\frac{N}{2}\right)
\end{aligned}
$$

for equispaced nodes $\boldsymbol{v}_{j}:=\frac{j}{N}\left(M=N^{d}\right)$
FFT (fast Fourier transform) in $\mathcal{O}\left(N^{d} \log N\right)$
for arbitrary nodes $\boldsymbol{v}_{j} \in[-1 / 2,1 / 2)^{d}$
NFFT (nonequispaced FFT) in $\mathcal{O}\left(N^{d} \log N+m^{d} M\right)$

Fourier algorithms on the sphere

Problem: fast computation of

$$
f(\theta, \phi)=\sum_{k=0}^{N} \sum_{n=-k}^{k} a_{k}^{n} Y_{k}^{n}(\theta, \phi)
$$

at arbitrary nodes $\left(\theta_{d}, \phi_{d}\right) \in \mathbb{S}^{2}(d=0, \ldots, M-1)$

- discrete spherical Fourier transform (FFT on \mathbb{S}^{2})

$$
\left(\theta_{d_{1}}, \phi_{d_{2}}\right):=\left(\frac{d_{1} \pi}{D_{1}}, \frac{2 d_{2} \pi}{D_{2}-1}\right) \quad d_{1}=0, \ldots, D_{1}-1, d_{2}, \ldots, D_{2}-1
$$

Driscoll, Healy (1994, 2003, ...); Potts, Steidl, Tasche (1998); Mohlenkamp (1999); Suda, Takami (2002); Rokhlin, Tygert (2006)

- nonequispaced discrete spherical Fourier transform (NFFT on \mathbb{S}^{2})

$$
\left(\theta_{d}, \phi_{d}\right) \in \mathbb{S}^{2}, \quad d=0, \ldots, M-1
$$

Kunis, P. (2003); Keiner, P. (2008)

Inverse NFFT on the sphere

$$
f=\sum_{k=0}^{N} \sum_{n=-k}^{k} \hat{f}_{k}^{n} Y_{k}^{n} \quad \in \Pi_{N}\left(\mathbb{S}^{2}\right)
$$

"inverse" problem, $\boldsymbol{f} \in \mathbb{C}^{M}$ given in

$$
\begin{aligned}
\boldsymbol{Y} \hat{\boldsymbol{f}} & \approx \boldsymbol{f}, \quad \hat{\boldsymbol{f}}=\left(\hat{f}_{k}^{n}\right)_{k=0, \ldots, N,|n| \leq k} \in \mathbb{C}^{(N+1)^{2}}, \boldsymbol{f} \in \mathbb{C}^{M} \\
\left(f\left(\boldsymbol{\xi}_{j}\right)\right)_{j=0, \ldots, \ldots-1} & \approx \boldsymbol{f}
\end{aligned}
$$

spherical Fourier matrix

$$
\boldsymbol{Y}:=\left(Y_{k}^{n}\left(\boldsymbol{\xi}_{j}\right)\right)_{j=0, \ldots, M-1 ; k=0, \ldots, N,|n| \leq k} \in \mathbb{C}^{M \times(N+1)^{2}} .
$$

The geodetic distance of $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{S}^{2}$ is given by

$$
\operatorname{dist}(\boldsymbol{\xi}, \boldsymbol{\eta}):=\arccos (\boldsymbol{\eta} \cdot \boldsymbol{\xi}) .
$$

We measure the "nonuniformity" of a sampling set $\mathcal{X}:=\left\{\boldsymbol{\xi}_{j} \in \mathbb{S}^{2}: j=\right.$ $0, \ldots, M-1\}, M \in \mathbb{N}$, by the mesh norm $\delta_{\mathcal{X}}$ and the separation distance $q_{\mathcal{X}}$, defined by

$$
\begin{aligned}
\delta_{\mathcal{X}} & :=2 \max _{\boldsymbol{\xi} \in \mathbb{S}^{2}} \min _{j=0, \ldots, M-1} \operatorname{dist}\left(\boldsymbol{\xi}_{j}, \boldsymbol{\xi}\right), \\
q_{\mathcal{X}} & :=\min _{0 \leq j<l<M} \operatorname{dist}\left(\boldsymbol{\xi}_{j}, \boldsymbol{\xi}_{l}\right) .
\end{aligned}
$$

The sampling set \mathcal{X} is called

- δ-dense for some $0<\delta \leq 2 \pi$, if $\delta_{\mathcal{X}} \leq \delta$, and
- q-separated for some $0<q \leq 2 \pi$, if $q_{\mathcal{X}} \geq q$.

Generalised spiral nodes

Distribution of the singular values of the spherical Fourier matrix $\boldsymbol{Y} \in \mathbb{C}^{M \times(N+1)^{2}}$ with respect to the polynomial degrees $N=$ $0, \ldots, 40$ for $M=400$ generalised spiral nodes

Least squares approximation

 $M>(N+1)^{2}$ over-determined$$
\|\boldsymbol{f}-\boldsymbol{Y} \hat{\boldsymbol{f}}\|_{W}^{2}=\sum_{j=0}^{M-1} w_{j}\left|f_{j}-f\left(\boldsymbol{\xi}_{j}\right)\right|^{2} \xrightarrow{\hat{f}} \min
$$

$\boldsymbol{W}:=\operatorname{diag}\left(w_{j}\right)_{j=0, \ldots, M-1} \in \mathbb{R}^{M \times M}$, weights $w_{j}>0$

The least squares problem is equivalent to the normal equation of first kind

$$
\boldsymbol{Y}^{H} \boldsymbol{W} \boldsymbol{Y} \hat{\boldsymbol{f}}=\boldsymbol{Y}^{H} \boldsymbol{W} \boldsymbol{f}
$$

Theorem: (Filbir ,Themistoclakis, 2008)
Let a δ-dense sampling set $\mathcal{X} \subset \mathbb{S}^{2}$ of cardinality $M \in \mathbb{N}$ be given. Moreover let for $N \in \mathbb{N}$ with $154 N \delta<1$ and $\boldsymbol{W}=\operatorname{diag}\left(w_{j}\right)_{j=0, \ldots, M-1}$, with Voronoi weights w_{j} be given. Then we have for arbitrary spherical polynomials $f \in \Pi_{N}\left(\mathbb{S}^{2}\right)$, for the vector $\boldsymbol{f}=\left(f\left(\boldsymbol{\xi}_{j}\right)\right)_{j=0, \ldots, M-1}$ the weighted norm estimate

$$
(1-154 N \delta)\|f\|_{L^{2}}^{2} \leq\|\boldsymbol{f}\|_{W}^{2} \leq(1+154 N \delta)\|f\|_{L^{2}}^{2} .
$$

Proof: based on spherical Marcinkiewicz-Zygmund inequalities (Mhaskar, Narcowich and Ward, 01; Filbir and Themistoclakis, 06).

Corollary:

$$
1-154 N \delta \leq \lambda_{\min }\left(\boldsymbol{Y}^{H} \boldsymbol{W} \boldsymbol{Y}\right) \leq 1 \leq \lambda_{\max }\left(\boldsymbol{Y}^{H} \boldsymbol{W} \boldsymbol{Y}\right) \leq 1+154 N \delta
$$

i.e.
a constant number of iterations in CGNR method is suffices to decrease the residual to a certain fraction

Optimal interpolation

$M<(N+1)^{2}$ under-determined

- given sample values $f_{j} \in \mathbb{C}, j=0, \ldots, M-1$ and weights $\hat{w}_{k}>0$

$$
\min _{\hat{\boldsymbol{f}} \in \mathbb{C}^{(N+1)^{2}}} \sum_{k=0}^{N} \sum_{n=-k}^{k} \frac{\left|\hat{f}_{k}^{n}\right|^{2}}{\hat{w}_{k}} \text { subject to } \sum_{k=0}^{N} \sum_{n=-k}^{k} \hat{f}_{k}^{n} Y_{k}^{n}\left(\boldsymbol{\xi}_{j}\right)=f_{j}
$$

The optimal interpolation problem is equivalent to the normal equations of second kind

$$
\boldsymbol{Y} \hat{\boldsymbol{W}} \boldsymbol{Y}^{H} \tilde{\boldsymbol{f}}=\boldsymbol{f}, \quad \hat{\boldsymbol{f}}=\hat{\boldsymbol{W}} \boldsymbol{Y}^{H} \tilde{\boldsymbol{f}}
$$

where $\hat{\boldsymbol{W}}:=\operatorname{diag}(\tilde{\boldsymbol{w}})$ with $\tilde{w}_{k}^{n}=\hat{w}_{k}, k=0, \ldots, N,|n| \leq k$.

- polynomial kernel $K_{N}:[-1,1] \rightarrow \mathbb{C}$ and its associated matrix

$$
K_{N}(t):=\sum_{k=0}^{N} \frac{2 k+1}{4 \pi} \hat{w}_{k} P_{k}(t), \quad \boldsymbol{K}:=\left(K_{N}\left(\boldsymbol{\xi}_{j} \cdot \boldsymbol{\xi}_{l}\right)\right)_{j, l=0, \ldots, M-1}
$$

$$
\boldsymbol{K}=\boldsymbol{Y} \hat{\boldsymbol{W}} \boldsymbol{Y}^{H}
$$

Theorem: (Kunis, 2005; Keiner, Kunis, P., 2006)
Let a q-separated sampling set $\mathcal{X} \subset \mathbb{S}^{2}$ of cardinality $M \in \mathbb{N}$ and with $q \leq \pi$ be given. Then for $N, \beta \in \mathbb{N}, N \geq \beta-1 \geq 2$, the kernel matrix

$$
\boldsymbol{K}=\left(K_{j, l}\right)_{j, l=0, \ldots, M-1}, \quad K_{j, l}=B_{\beta, N}\left(\boldsymbol{\xi}_{j} \cdot \boldsymbol{\xi}_{l}\right),
$$

has bounded eigenvalues

$$
|\lambda(\boldsymbol{K})-1| \leq \frac{25 c_{\beta} \zeta(\beta-1)}{((N+1) q)^{\beta}} .
$$

Corollary: Let a q-separated sampling set $\mathcal{X} \subset \mathbb{S}^{2}$ of cardinality $M \in \mathbb{N}$ and with $q \leq \pi$ be given. Moreover, let $N \in \mathbb{N},(N+1) q>11.2$, and weights be given by the sampled cubic B-Spline. Then we have

$$
1-\left(\frac{11.2}{(N+1) q}\right)^{4} \leq \lambda_{\min }\left(\boldsymbol{Y} \hat{\boldsymbol{W}} \boldsymbol{Y}^{\Perp}\right) \leq \lambda_{\max }\left(\boldsymbol{Y} \hat{\boldsymbol{W}} \boldsymbol{Y}^{\Perp}\right) \leq 1+\left(\frac{11.2}{(N+1) q}\right)^{4}
$$

i.e.
a constant number of iterations in CGNE method is suffices to decrease the error to a certain fraction

Numerical example

The original atmospheric temperature of the earth from 5 November 2006 measured by a satellite in Kelvin.

Least squares approximation to the global temperature data with $N=32$.

Least squares approximation to the global temperature data with $N=128$.

Probabilistic Marcinkiewicz-Zygmund Inequalities (Böttcher, Kunis, P. 08)

Observation: in practice theoretically ill-conditioned systems often behave better than one would expect Idea: probabilistic arguments

- Bass, Gröchenig, Rauhut (03,07): results for randomly chosen sampling nodes
- deterministic MZ inequality (Filbir ,Themistoclakis)

$$
(1-154 N \delta)\|f\|_{L^{2}}^{2} \leq\|\boldsymbol{f}\|_{\boldsymbol{W}}^{2} \leq(1+154 N \delta)\|f\|_{L^{2}}^{2}
$$

- Now: randomly chosen polynomials

$$
\mathbb{P}\left((1-\epsilon)\|f\|_{L^{2}}^{2} \leq\|\boldsymbol{f}\|_{W}^{2} \leq(1+\epsilon)\|f\|_{L^{2}}^{2}\right) \geq 1-\eta
$$

Example on \mathbb{S}^{2} :

- to ensure the inequality

$$
\begin{equation*}
\frac{1}{2}\|f\|_{2} \leq\|\boldsymbol{f}\|_{\boldsymbol{W}, 2} \leq \frac{3}{2}\|f\|_{2} \tag{1}
\end{equation*}
$$

for $N \leq 13$, one has to require that $R \leq 1 /(2 \cdot 13 \cdot 84) \approx 0.00046$ (Filbir, Themistoclakis 06, case $q=3, p=2$);

- \hat{f}_{k}^{n} taken at random from the uniform distribution, then

$$
\mathbb{P}\left(\frac{1}{2}\|f\|_{2} \leq\|\boldsymbol{f}\|_{\boldsymbol{W}, 2} \leq \frac{3}{2}\|f\|_{2}\right) \geq 0.95
$$

whenever $R \leq 0.00046$ and $N \leq 2184$, on the earth $l=2.03 \mathrm{~km}$, using (1) for $N \leq 2184$ we have to take $l=12 \mathrm{~m}$.
R is partition norm

$$
R=\max _{j} \operatorname{diam} R_{j}:=\max _{j} \max _{\xi, \eta \in R_{j}} d(\boldsymbol{\xi}, \boldsymbol{\eta})
$$

By A. Böttcher, S. Grudsky (EJP,03) it was shown that if x is randomly drawn from the uniform distribution and $\boldsymbol{A} \in \mathbb{C}^{m \times n}$

$$
\mathbb{P}\left(\left|\frac{\|\boldsymbol{A} \boldsymbol{x}\|^{2}}{\|\boldsymbol{x}\|^{2}}-\frac{\|\boldsymbol{A}\|_{F}^{2}}{n}\right| \leq \varepsilon\right) \geq 1-\frac{2}{n \varepsilon^{2}}\left(\frac{\left\|\boldsymbol{A} \boldsymbol{A}^{H}\right\|_{F}^{2}}{n}-\left(\frac{\|\boldsymbol{A}\|_{F}^{2}}{n}\right)^{2}\right)
$$

Corollary: Let $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ and suppose $\|\boldsymbol{A}\|_{\mathrm{F}}^{2}=n$. If \boldsymbol{x} is taken at random from the uniform distribution on \mathbb{B}^{n}, then

$$
\mathbb{P}\left(1-\epsilon \leq \frac{\|\boldsymbol{A} \boldsymbol{x}\|_{2}}{\|\boldsymbol{x}\|_{2}} \leq 1+\epsilon\right) \geq 1-\frac{2\left\|\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}\right\|_{\mathrm{F}}^{2}}{n^{2} \epsilon^{2}(2-\epsilon)^{2}}
$$

for every $\epsilon \in(0,1)$.

Theorem: (Böttcher, Kunis, P., 08)
If $N R \leq 1$ then

$$
\mathbb{P}\left(1-\epsilon \leq \frac{\|\boldsymbol{f}\|_{\boldsymbol{W}, 2}}{\|f\|_{2}} \leq 1+\epsilon\right) \geq 1-\frac{2\left(1+B_{d} N R\right)}{\mathcal{N}_{d}(N) \epsilon^{2}(2-\epsilon)^{2}}
$$

for each $\epsilon \in(0,1)$.
$B_{d}=3^{d / 2}$ is Filbir/Themistoclakis constant depending only on d $\mathcal{N}_{d}(N)$ is the dimension of Π_{N}^{d}
R is partition norm

$$
R=\max _{j} \operatorname{diam} R_{j}:=\max _{j} \max _{\xi, \eta \in R_{j}} d(\boldsymbol{\xi}, \boldsymbol{\eta})
$$

Corollary:

Let $N R \leq 1$. If $0<\alpha<d / 2$, then

$$
a_{N}:=\frac{2\left(1+B_{d} N R\right) N^{2 \alpha}}{\mathcal{N}_{d}(N)} \sim \frac{\Gamma(d+1)\left(1+B_{d} N R\right)}{N^{d-2 \alpha}}
$$

and

$$
\mathbb{P}\left(1-\frac{1}{N^{\alpha}} \leq \frac{\|\boldsymbol{f}\|_{\boldsymbol{W}, 2}}{\|f\|_{2}} \leq 1+\frac{1}{N^{\alpha}}\right) \geq 1-a_{N} .
$$

If $0<\beta<d$, then

$$
b_{N}:=\sqrt{\frac{2 N^{\beta}\left(1+B_{d} N R\right)}{\mathcal{N}_{d}(N)}} \sim \frac{\sqrt{\Gamma(d+1)\left(1+b_{d} N R\right)}}{N^{(d-\beta) / 2}}
$$

and

$$
\mathbb{P}\left(1-b_{N} \leq \frac{\|\boldsymbol{f}\|_{\boldsymbol{W}, 2}}{\|f\|_{2}} \leq 1+b_{N}\right) \geq 1-\frac{1}{N^{\beta}}
$$

Theorem:

Let $d \geq 2, \epsilon \in(0,1), \eta \in(0,1), L \in(1, \infty)$, and suppose the set \mathcal{X} has partition norm R and separation distance q. Then there exists a positive number $\varrho_{0}=\varrho_{0}(d, \epsilon, \eta, L)>0$ such that

$$
\mathbb{P}\left(1-\epsilon \leq \frac{\|\boldsymbol{f}\|_{\boldsymbol{W}, 2}}{\|f\|_{2}} \leq 1+\epsilon\right) \geq 1-\eta
$$

for every polynomial degree $N \geq 0$ whenever the uniformity condition $R / q<L$ and the density condition $R<\varrho_{0}$ hold.

Conclusions

- NFFT and inverse NFFT
- NFFT on the sphere
- Iterative reconstruction on \mathbb{S}^{2}
- Probabilistic arguments
http://www.tu-chemnitz.de/~potts

