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Two-parameter eigenvalue problem

• Two-parameter eigenvalue problem:

(A1 + λB1 + µC1)x = 0

(2EP)
(A2 + λB2 + µC2)y = 0,

where Ai, Bi, Ci are n× n matrices, λ, µ ∈ C, x, y ∈ Cn.

• Eigenvalue: a pair (λ, µ) that satisfies (2EP) for nonzero x and y.

• Eigenvector: the tensor product x⊗ y.

• There are n2 eigenvalues, which are solutions of

det(A1 + λB1 + µC1) = 0

det(A2 + λB2 + µC2) = 0.
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Tensor product approach

(A1 + λB1 + µC1)x = 0
(2EP)

(A2 + λB2 + µC2)y = 0

• On Cn ⊗ Cn we define n2 × n2 matrices

∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = C1 ⊗ A2 − A1 ⊗ C2

∆2 = A1 ⊗ B2 − B1 ⊗ A2.

• 2EP is equivalent to a coupled GEP

∆1z = λ∆0z
(∆)∆2z = µ∆0z,

where z = x⊗ y.

• 2EP is nonsingular ⇐⇒ ∆0 is nonsingular

• ∆−1
0 ∆1 and ∆−1

0 ∆2 commute.
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Numerical methods

(2EP)
(A1 + λB1 + µC1)x = 0

(A2 + λB2 + µC2)y = 0

∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = C1 ⊗ A2 − A1 ⊗ C2

∆2 = A1 ⊗ B2 − B1 ⊗ A2

∆1z = λ∆0z

∆2z = µ∆0z
(∆)

Hochstenbach, Košir, P. (2005): QZ applied to (∆). Time complexity: O(n6).
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(2EP)
(A1 + λB1 + µC1)x = 0

(A2 + λB2 + µC2)y = 0

∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = C1 ⊗ A2 − A1 ⊗ C2

∆2 = A1 ⊗ B2 − B1 ⊗ A2

∆1z = λ∆0z

∆2z = µ∆0z
(∆)

Hochstenbach, Košir, P. (2005): QZ applied to (∆). Time complexity: O(n6).

Algorithms that work directly with matrices Ai, Bi, Ci:

• Gradient method: Blum, Curtis, Geltner (1978), Browne, Sleeman (1982)

• Newton’s method for eigenvalues: Bohte (1980)

• Generalized Rayleigh Quotient Iteration: Ji, Jiang, Lee (1992)

• Jacobi-Davidson:

– Hochstenbach, P. (2002) for right definite 2EP,

– Hochstenbach, Košir, P. (2005) for nonsingular 2EP,

– Hochstenbach, P. (2008) - harmonic extraction
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Singular 2EP

(2EP)
(A1 + λB1 + µC1)x = 0

(A2 + λB2 + µC2)y = 0

∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = C1 ⊗ A2 − A1 ⊗ C2

∆2 = A1 ⊗ B2 − B1 ⊗ A2

∆1z = λ∆0z

∆2z = µ∆0z
(∆)

2EP is singular iff ∆0 is singular.

For singular 2EP, there are no general results linking the eigenvalues of (2EP) and (∆).

We know:

(A1 + λB1 + µC1)x = 0

(A2 + λB2 + µC2)y = 0
=⇒ ∆1(x⊗ y) = λ∆0(x⊗ y)

∆2(x⊗ y) = µ∆0(x⊗ y)
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Finite regular eigenvalues

A pair (λ, µ) is a finite regular eigenvalue of (2EP) if:

rank(Ai + λBi + µCi) < max
(s,t)∈C2

rank(Ai + sBi + tCi)

for i = 1, 2.
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Finite regular eigenvalues

A pair (λ, µ) is a finite regular eigenvalue of (2EP) if:

rank(Ai + λBi + µCi) < max
(s,t)∈C2

rank(Ai + sBi + tCi)

for i = 1, 2.

A pair (λ, µ) is a finite regular eigenvalue of matrix pencils ∆1 − λ∆0 and ∆2 − µ∆0 if:

1. rank(∆1 − λ∆0) < max
s∈C

rank(∆1 − s∆0),

2. rank(∆2 − µ∆0) < max
t∈C

rank(∆2 − t∆0),

3. there exists a common eigenvector z in regular parts of ∆1− λ∆0 and ∆2−µ∆0 such that

(∆1 − λ∆0)z = 0,

(∆2 − µ∆0)z = 0.
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Finite regular eigenvalues

A pair (λ, µ) is a finite regular eigenvalue of (2EP) if:

rank(Ai + λBi + µCi) < max
(s,t)∈C2

rank(Ai + sBi + tCi)

for i = 1, 2.

A pair (λ, µ) is a finite regular eigenvalue of matrix pencils ∆1 − λ∆0 and ∆2 − µ∆0 if:

1. rank(∆1 − λ∆0) < max
s∈C

rank(∆1 − s∆0),

2. rank(∆2 − µ∆0) < max
t∈C

rank(∆2 − t∆0),

3. there exists a common eigenvector z in regular parts of ∆1− λ∆0 and ∆2−µ∆0 such that

(∆1 − λ∆0)z = 0,

(∆2 − µ∆0)z = 0.

Conjecture. Finite regular eigenvalues of (2EP) = finite regular eigenvalues of (∆).
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Quadratic 2EP

(A1 + λB1 + µC1 + λ
2
D1 + λµE1 + µ

2
F1)x = 0

(Q2EP)

(A2 + λB2 + µC2 + λ
2
D2 + λµE2 + µ

2
F2)y = 0,

where Ai, Bi, . . . , Fi are n×n matrices, (λ, µ) is an eigenvalue, and x⊗y is the corresponding

eigenvector. In the generic case the problem has 4n2 eigenvalues that are solutions of

det(A1 + λB1 + µC1 + λ
2
D1 + λµE1 + µ

2
F1) = 0

det(A2 + λB2 + µC2 + λ
2
D2 + λµE2 + µ

2
F2) = 0.

Jahrlebring (2008): Q2EP of a simpler form, with some of the terms λ2, λµ, µ2 missing, appears

in the study of linear time-delay systems for the single delay.
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Linearization

(A1 + λB1 + µC1 + λ
2
D1 + λµE1 + µ

2
F1)x = 0

(Q2EP)

(A2 + λB2 + µC2 + λ
2
D2 + λµE2 + µ

2
F2)y = 0
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Linearization

(A1 + λB1 + µC1 + λ
2
D1 + λµE1 + µ

2
F1)x = 0

(Q2EP)

(A2 + λB2 + µC2 + λ
2
D2 + λµE2 + µ

2
F2)y = 0

Vinnikov (1989): It follows from the theory on determinantal representations that one could write

Q2EP as a two-parameter eigenvalue problem with 2n× 2n matrices.

Since there is no construction this is just a theoretical result.
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Linearization

(A1 + λB1 + µC1 + λ
2
D1 + λµE1 + µ

2
F1)x = 0

(Q2EP)

(A2 + λB2 + µC2 + λ
2
D2 + λµE2 + µ

2
F2)y = 0

Vinnikov (1989): It follows from the theory on determinantal representations that one could write

Q2EP as a two-parameter eigenvalue problem with 2n× 2n matrices.

Since there is no construction this is just a theoretical result.

Best we can do is to write Q2EP as a two-parameter eigenvalue problem with 3n× 3n matrices:

0
@
2
4A1 B1 C1

0 −I 0

0 0 −I

3
5+ λ

2
4 0 D1 E1

I 0 0

0 0 0

3
5+ µ

2
4 0 0 F1

0 0 0

I 0 0

3
5
1
A
2
4 x

λx

µx

3
5 = 0

0
@
2
4A2 B2 C2

0 −I 0

0 0 −I

3
5+ λ

2
4 0 D2 E2

I 0 0

0 0 0

3
5+ µ

2
4 0 0 F2

0 0 0

I 0 0

3
5
1
A
2
4 y

λy

µy

3
5 = 0.
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Weak linearization

If we multiply the matrix of the first equation2
4A1 B1 + λD1 C1 + λE1 + µF1

λI −I 0

µI 0 −I

3
5

from left by the unimodular polynomial

E(λ, µ) =

2
4 I B1 + λD1 0

0 I 0

0 0 I

3
5
2
4 I 0 C1 + λE1 + µF1

0 I 0

0 0 I

3
5

and from right by the unimodular polynomial

F (λ, µ) =

2
4 I 0 0

0 I 0

µI 0 I

3
5
2
4 I 0 0

λI I 0

0 0 I

3
5

we obtain 2
4A1 + λB1 + µC1 + λ2D1 + λµE1 + µ2F1 0 0

0 I 0

0 0 I

3
5 .
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Linearization is a singular 2EP

A
(1)

+ λB
(1)

+ µC
(1)

=

2
4A1 B1 C1

0 −I 0

0 0 −I

3
5+ λ

2
4 0 D1 E1

I 0 0

0 0 0

3
5+ µ

2
4 0 0 F1

0 0 0

I 0 0

3
5

A
(2)

+ λB
(2)

+ µC
(2)

=

2
4A2 B2 C2

0 −I 0

0 0 −I

3
5+ λ

2
4 0 D2 E2

I 0 0

0 0 0

3
5+ µ

2
4 0 0 F2

0 0 0

I 0 0

3
5.

The matrices of the corresponding pair of generalized eigenvalue problems are

∆0 = B
(1) ⊗ C

(2) − C
(1) ⊗ B

(2)
,

∆1 = C
(1) ⊗ A

(2) − A
(1) ⊗ C

(2)
,

∆2 = A
(1) ⊗ B

(2) − B
(1) ⊗ A

(2)
.

Lemma. In the generic case (matrices D1, D2, F1, F2 are all nonsingular) it follows:

1. rank(∆1) = rank(∆2) = 8n2,

2. rank(∆0) = 6n2,

3. det(α0∆0 + α1∆1 + α2∆2) = 0 for all α0, α1, α2.
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Regular eigenvalues

In the generic case (matrices D1, D2, F1, F2 are all nonsingular), we have:

1. A basis for ker(∆1) is

2
4 0

ei

0

3
5⊗

2
4 0

ej

0

3
5 , i, j = 1, . . . , n.

2. A basis for ker(∆2) is

2
4 0

D−1
1 E1ei

−ei

3
5⊗

2
4 0

D−1
2 E2ej

−ej

3
5 , i, j = 1, . . . , n.

3. ker(∆i) ⊂ ker(∆0) for i = 1, 2. A basis for the remaining vectors in ker(∆0) is2
4 0

D−1
1 (E1 − F1)ei

−ei

3
5⊗

2
4 0

D−1
2 (E2 − F2)ej

−ej

3
5 , i, j = 1, . . . , n.

Theorem. The eigenvalues of Q2EP are regular eigenvalues of the coupled matrix pencils

∆1 − λ∆0 and ∆2 − µ∆0 from the weak linearization.

Cortona, September 15-19, 2008 12/23



Kronecker canonical structure

For a matrix pencil A− λB there exist nonsingular matrices P and Q such that

P
−1

(A− λB)Q = eA− λ eB = diag(A1 − λB1, . . . , Ab − λBb)

is the Kronecker canonical form (KCF). Regular blocks

Jj(α) =

2
664

α− λ 1
. . . . . .

. . . 1

α− λ

3
775 , Nj =

2
664

1 −λ
. . . . . .

. . . −λ

1

3
775 ,

and singular blocks

Lj =

2
4−λ 1

. . . . . .

−λ 1

3
5 , L

T
j =

2
664
−λ

1 . . .
. . . −λ

1

3
775 ,

represent finite regular, infinite regular, right singular, and left singular blocks, respectively.

Theorem. Kronecker canonical form of pencil ∆1− λ∆0 (and ∆2−µ∆0) has n2 L0, n2 LT
0 ,

2n2 N2 blocks, and the finite regular part of size 4n2.
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Numerical method for singular 2EP

(2EP)
(A1 + λB1 + µC1)x = 0

(A2 + λB2 + µC2)y = 0

∆0 = B1 ⊗ C2 − C1 ⊗ B2

∆1 = C1 ⊗ A2 − A1 ⊗ C2

∆2 = A1 ⊗ B2 − B1 ⊗ A2

∆1z = λ∆0z

∆2z = µ∆0z
(∆)

We extract the common regular part of matrix pencils (∆).

We obtain matrices e∆0, e∆1, and e∆2 such that e∆0 is nonsingular and eigenvalues of

e∆1ez = λe∆0eze∆2ez = µe∆0ez (e∆)

are common regular eigenvalues of (∆).

For Q2EP and some other singular 2EP we can show that

regular eigenvalues of (2EP) = eigenvalues of (e∆) = regular eigenvalues of (∆).

For the extraction of the common regular part we use the algorithm by Van Dooren (1979).
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Generalized upper-triangular form

Instead of KCF, we use the generalized upper-triangular form (GUPTRI):

P
H
(A− λB)Q =

2
664

Aµ − λBµ

× A∞ − λB∞
× × Af − λBf

× × × Aε − λBε

3
775.

Pencils Aµ − λBµ, A∞ − λB∞, Af − λBf , and Aε − λBε contain the left singular, the

infinite regular, the finite regular, and the right singular structure, respectively.

Van Dooren (1979), Demmel and Kågström (1993), software package GUPTRI.
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Algorithms RRS and RLS

RRS: Extraction of the regular and the right singular part

Using SVD for the row and column compressions of the matrices A and B we find matrices

P, Q with orthonormal columns such that

• P
H
(A − λB)Q =

�
Af − λBf

× Aε − λBε

�
is a regular and right singular structure of

pencil A− λB,

• the columns of Q are a basis for the eigenspace of the regular and the right singular part.
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P, Q with orthonormal columns such that

• P
H
(A − λB)Q =

�
Af − λBf

× Aε − λBε

�
is a regular and right singular structure of

pencil A− λB,

• the columns of Q are a basis for the eigenspace of the regular and the right singular part.

RLS: Extraction of the regular and the left singular part

Using SVD for the column and row compressions of the matrices A and B we find matrices

P, Q with orthonormal columns such that

• P
H
(A − λB)Q =

�
Aµ − λBµ

× Af − λBf

�
is a regular and left singular structure of

pencil A− λB,

• the columns of Q are a basis for the eigenspace of the regular and the left singular part.
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Algorithm for the common regular part

We start with matrix pencils ∆1 − λ∆0 and ∆2 − µ∆0, P = I and Q = I.

1. Separate infinite and finite part.

(a) Apply Algorithm RRS to P H∆1Q− λP H∆0Q and P H∆2Q− µP H∆0Q.

We get P1, Q1 and P2, Q2.

(b) Compute Q and P with orthon. columns such that Q = Q1 ∩ Q2 and P = P1 ∪ P2.

(c) If Q = Q1 return P, Q and proceed to (2a). Otherwise, proceed to (1a).

2. Separate the finite regular part from the right singular part.

(a) Apply Algorithm RLS on P H∆1Q− λP H∆0Q and P H∆2Q− µP H∆0Q.

We get P1, Q1 and P2, Q2.

(b) Compute Q and P with orthon. columns such that Q = Q1 ∪ Q2 and P = P1 ∩ P2.

(c) If P = P1 return P, Q and exit. Otherwise, proceed to (2a).

In the end e∆0 = P H∆0Q, e∆1 = P H∆1Q, e∆2 = P H∆2Q and e∆0 is nonsingular.

Cortona, September 15-19, 2008 17/23



Q2EP example

��
−3 4
6 −1

�
+ λ

�
7 2
−2 1

�
+ µ

�
4 −1
9 4

�
+ λ

2
�

6 7
5 2

�
+ λµ

�
10 −3
7 1

�
+ µ

2
�

4 8
6 −3

��
x = 0,

��
−1 3
2 −1

�
+ λ

�
−1 −4
8 2

�
+ µ

�
2 3
−4 −1

�
+ λ

2
�

2 6
1 3

�
+ λµ

�
7 −2
3 7

�
+ µ

2
�

3 −5
−5 2

��
y = 0.

Matrices ∆0, ∆1, ∆2 obtained in the linearization are of size 36× 36.

The algorithm for the extraction of the common regular part returns matrices e∆0, e∆1, e∆2 of

size 16× 16, such that e∆0 is nonsingular and eigenvalues of

e∆1ez = λe∆0ez
e∆2ez = µe∆0ez (e∆)

are the eigenvalue of the Q2EP.

From (e∆) we can compute all 16 eigenvalues of Q2EP. The largest and the smallest

eigenvalue (in absolute value) truncated to 3 decimal places are (1.799,−2.166) and

(0.007± 0.167i,−0.507± 0.1i).
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Cubic two-parameter eigenvalue problem

(S00 + λS10 + µS01 + · · ·+ λ
3
S30 + λ

2
µS21 + λµ

2
S12 + µ

3
S03)x = 0

(T00 + λT10 + µT01 + · · ·+ λ
3
T30 + λ

2
µT21 + λµ

2
T12 + µ

3
T03)y = 0.

In the general case the problem has 9n2 eigenvalues. A possible linearization is

0
BBBBBB@

2
6666664

S00 S10 S01 S20 S11 S02
−I

−I
−I

−I
−I

3
7777775

+ λ

2
6666664

0 0 0 S30 S21 S12
I 0 0 0 0 0
0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0

3
7777775

+ µ

2
6666664

0 0 0 0 0 S03
0 0 0 0 0 0
I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0

3
7777775

1
CCCCCCA
ex = 0

0
BBBBBB@

2
6666664

T00 T10 T01 T20 T11 T02
−I

−I
−I

−I
−I

3
7777775

+ λ

2
6666664

0 0 0 T30 T21 T12
I 0 0 0 0 0
0 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0

3
7777775

+ µ

2
6666664

0 0 0 0 0 T03
0 0 0 0 0 0
I 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0

3
7777775

1
CCCCCCA
ey = 0,

where ex = [ 1 λ µ λ2 λµ µ2 ]
T ⊗ x and ey = [ 1 λ µ λ2 λµ µ2 ]

T ⊗ y.

Problem is singular, rank(∆0) = 20n2.

Similarly we can linearize all bivariate matrix polynomials.
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Model updating as a singular 2EP

Model updating (Cottin 2001, Cottin and Reetz 2006): Parameters of finite element models of

multibody systems are updated to match the measured input-output data.

Updating two degrees of freedom by two measurements is equivalent to:

Find a perturbation of matrix A by a linear combination of matrices B and C, such that

A + λB + µC has the prescribed eigenvalues σ1 and σ2.
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Model updating as a singular 2EP

Model updating (Cottin 2001, Cottin and Reetz 2006): Parameters of finite element models of

multibody systems are updated to match the measured input-output data.

Updating two degrees of freedom by two measurements is equivalent to:

Find a perturbation of matrix A by a linear combination of matrices B and C, such that

A + λB + µC has the prescribed eigenvalues σ1 and σ2.

The problem, usually treated as an optimization problem, can be expressed as a 2EP

(A− σ1I + λB + µC)x = 0,

(A− σ2I + λB + µC)y = 0.

det(B ⊗ C − C ⊗ B) = 0 and this is a singular 2EP.
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Jacobi-Davidson method

• Jacobi–Davidson method was successfully applied to nonsingular 2EPs.

• J-D is a subspace method, in each outer step we have to solve a smaller projected 2EP.

• Now that we have a solver for singular 2EPs, we can use it in the outer step.

• This gives us a J-D for singular 2EP.

A possible application is model updating, where FEM matrices can be large and sparse, and one

is interested in real and componentwise positive eigenvalues (λ, µ) that are close to the target,

which is usually (1, 1).
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Zeros of bivariate polynomials

Suppose that we have a system of two bivariate polynomials

p(x, y) =

nX
i=0

n−iX
j=0

aijx
i
y

j
= 0

q(x, y) =

nX
i=0

n−iX
j=0

bijx
i
y

j
= 0.

Such system has n2 solutions.

We can linearize this as a singular 2EP with matrices of size
n(n + 1)

2
×

n(n + 1)

2
.

Matrices of 2EP are very large, but:

• We can apply Jacobi–Davidson method to compute solutions close to a target (x0, y0).

• Since matrices are very sparse, we need O(n2) flops for one MV multiplication in J-D.

• This is the same order as for one evaluation of p(x, y) and q(x, y).
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Conclusions

• The algorithm for the extraction of the common regular subspace of two matrix pencils.

• Q2EP can be solved via 2EP linearization.

• Possible new approach for systems of bivariate polynomials.

• Possible application in model updating.

• Ideas could be straightforward generalized to problems with three or more parameters.
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