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Introduction to DG-FEM
DG-FEM are finite element methods based on completely discontinuous
finite element spaces

Ingredients

Th = {K} partition of the domain Ω
P`(Th) = piecewise polynomials of degree ` in each element possibly
discontinuous across interelement boundaries
Local variational formulation (element-by-element) → interelement
continuity conditions imposed within the variational formulation
(no special boundary degrees of freedom, no Lagrange multipliers)
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Introduction to DG-FEM

Main Features

Wide range of PDE’s treated within the same unified framework

Flexibility in the mesh design → good for adaptivity
I non-matching grids (hanging nodes)
I non-uniform approximation degrees

K
i

•

•

•

K
j

• •

•

•• •

•

Block-diagonal (even diagonal) mass matrices

Drawback: high number of degrees of freedom
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DG for the Poisson Problem

The Poisson Problem

Given f ∈ L2(Ω) and gD ∈ H1/2(Ω), find u ∈ H1(Ω) s.t.

−∆u = f in Ω ⊂ R2

u = gD on ∂Ω

Variational Formulation

Find u ∈ H1(Ω) with u = gD on ∂Ω s.t.∫
Ω
∇u · ∇v =

∫
Ω

f v ∀v ∈ H1
0 (Ω)

For continuous FE spaces:

∫
Ω
∇uh · ∇vh =

∫
Ω

f vh → standard FEM
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DG for the Poisson Problem

Th partition of the domain; Fh set of all edges (faces in 3D);
FI

h , FB
h sets of all interior and boundary edges, resp.

Vh = P`(Th) possibly discontinuous across interelement boundaries
Vh 6⊂ H1

0 (Ω)

−∆u = f in Ω ⊂ R2, u = gD on ∂Ω

Multiply by vh ∈ Vh and integrate by parts in each element∫
K
∇u · ∇vh −

∫
∂K
∇u · nK vh =

∫
K

f vh

Sum over all elements∑
K∈Th

∫
K
∇u · ∇vh −

∑
K∈Th

∫
∂K
∇u · nK vh =

∫
Ω

f vh
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DG for the Poisson Problem

∑
K∈Th

∫
K
∇u · ∇vh −

∑
K∈Th

∫
∂K
∇u · nK vh =

∫
Ω

f vh

Key formula∑
K∈Th

∫
∂K
∇u · nK vh =

∑
f ∈Fh

∫
f
{{∇u}} · [[vh]]N +

∑
f ∈FI

h

∫
f
[[∇u]]N {{vh}}

︸ ︷︷ ︸
=0

Averages and jumps on interior edges

{{v}} := (v+ + v−)/2 {{q}} := (q+ + q−)/2

[[v ]]N := v+n+ + v−n− [[q]]N := q+ · n+ + q− · n−

Averages and jumps on boundary edges

{{q}} = q

[[v ]]N := vn, [[u]]N := (u − gD)n
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DG for the Poisson Problem
DG Methods of the Interior Penalty Family (IP-DG)∑
K∈Th

∫
K
∇uh · ∇vh −

∑
f ∈Fh

∫
f
{{∇uh}} · [[vh]]N

− k
∑
f ∈Fh

∫
f
[[uh]]N · {{∇hvh}}+

∑
f ∈Fh

∫
f
α h−1 [[uh]]N · [[vh]]N

=

∫
Ω

f vh

k = −1 SIP-DG [Douglas & Dupont, 1976], [Wheeler, 1978], [Arnold, 1982]

k = −1 NIP-DG [Baumann & Oden,1998], [Rivière, Wheeler & Girault, 1999]

α > 0 stability parameter independent of the mesh size

Stability and convergence theory well established
[Arnold, Brezzi, Cockburn & Marini, 2002]

For continuous FE spaces:

∫
Ω
∇uh · ∇vh =

∫
Ω

f vh → standard FEM
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Matrix Form

IP-DG Methods∑
K∈Th

∫
K
∇uh · ∇vh

−
∑
f ∈Fh

∫
f
{{∇uh}} · [[vh]]N

− k
∑
f ∈Fh

∫
f
[[uh]]N · {{∇hvh}}+

∑
f ∈Fh

∫
f
α h−1 [[uh]]N · [[vh]]N =

∫
Ω

f vh

[
V

− F − kFT + αS

]
︸ ︷︷ ︸

:=A

u

= f

V and S symmetric, positive semidefinite; V block diagonal

A positive definite (provided that α is large enough for SIP)

A symmetric for SIP, non-symmetric for NIP

A large, sparse, κ2(A) ∼ h−2
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Matrix Form

V
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Matrix Form

V + αS
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Matrix Form

V − F − kFT + αS =: A
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Solvers

Domain decomposition (Schwarz) preconditioners
[Rusten, Vassilevski & Winther, 1996], [Feng & Karakashian, 2001],

[Lasser & Toselli, 2003], [Brenner & Wang, 2005],

[Antonietti & Ayuso, 2007-08], [Dryja, Galvis & Sarkis, 2007]

Multigrid methods
[Gopalakrishnan and Kanschat, 2003-04], [Brenner & Zhao, 2005],

[Brenner & Owens, 2005]

Multilevel preconditioners with cG discretization at lowest level
[Warsa, Benzi, Wareing & Morel, 2004], [Antonietti & Ayuso, 2007]

Norm preconditioners
[Georgoulis & Loghin, 2008]
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Solvers

Domain decomposition (Schwarz) preconditioners
[Rusten, Vassilevski & Winther, 1996]: overlapping DD for SIP within a precond.

[Rusten, Vassilevski & Winther, 1996]: for conforming mixed problems

[Feng & Karakashian, 2001], [Brenner & Wang, 2005]: exact local solvers

[Antonietti & Ayuso, 2007-08]: inexact local solvers (more parallel, coarse solver

[Antonietti & Ayuso, 2007-08]: either discont. or cont.)

Multigrid methods
[Gopalakrishnan and Kanschat, 2003-04]: variable V –cycle, J or GS smoothers

[Brenner & Zhao, 2005]: V , W , F–cycles, Richardson smoother

[Kanschat, 2003]: block triang. precond. for DG in mixed form with MG-SIP

[Kanschat, 2003]: in the (2,2) block

Multilevel preconditioners with cG discretization at lowest level
[Warsa, Benzi, Wareing & Morel, 2004]: mixed form/ cG for Laplacian as

[Warsa, Benzi, Wareing & Morel, 2004]: “coarse grid” correction (PCG, AMG)

Norm preconditioners
[Georgoulis & Loghin, 2008]: norm matrix as precond.
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Solvers: Two Remarks

1 Schwarz preconditioners
One of the conditions for convergence of iterative methods is a
stable splitting of Vh as sum of the subdomain-related subspaces
and the coarse grid-related subspace.

For cG and non-overlapping subdomain partitions, the stable
splitting condition does not hold → spectral bounds of order H/h
are obtained with a minimum overlap.
For DG, spectral bounds of order H/h are obtained also for
non-overlapping subdomain partitions.

2 GMRES convergence theory
For non-symmetric linear systems, one of the conditions required by
the theory is the positivity of the symmetric part of the operator
[Eisenstat, Elmann & Schultz, 1983].
NIP-DG provides an example in which, although the symmetric part
of the operator has negative eigenvalues, the convergence of
GMRES takes place all the same.
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Maxwell’s Problems

Mixed problem (low-frequency approximation of the time-harmonic
Maxwell’s problem in insulating materials)

∇× (µ−1∇× u)− ε∇p = f in Ω

∇ · (εu) = 0 in Ω

n× u = 0, p = 0 on ∂Ω

(continuity of the tangential component of u and continuity of p
across interfaces)

Indefinite problem (full time-harmonic Maxwell’s problem)

∇× (µ−1∇× u)− ω2εu = f in Ω

n× u = 0 on ∂Ω

Eigenvalue problem

∇× (µ−1∇× u) = ω2εu in Ω

n× u = 0 on ∂Ω
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Maxwell’s Problems

DG Discretizations

Key ingredient: DG discretization of the curl-curl operator
I similar to DG discretization of the Laplacian

(here: penalization of the tangential jumps of u)
I complex vector-valued fields
I “large” kernel

For the mixed problem

∇× (µ−1∇× u)− ε∇p = f

∇ · (εu) = 0

I imposition of the divergence-free constraint in a DG fashion
I penalization of the jumps of p
I balancing Vh and Qh (polynomials of degree ` for u and ` + 1 for p)
I theoretical analysis based on an underlying stable discretization with

conforming elements [Houston, Perugia & Schötzau, 2005]
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Maxwell’s Problems
DG Discretizations

For the indefinite problem

∇× (µ−1∇× u)− ω2εu = f

I DG discretization straightforward (recall: block diagonal mass matrix)
I theoretical analysis: same approach as for conforming discretizations,

with the additional difficulty due to non-conformity
[Houston, Perugia, Schneebeli & Schötzau, 2005]

For the eigenvalue problem

∇× (µ−1∇× u) = ω2εu

I DG discretization straightforward
I theoretical analysis: difficulties due to the combination of presence of

a kernel and non-conformity [Buffa & Perugia, 2006]
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Matrix Form
Mixed Problem

∇× (µ−1∇× u)− ε∇p = f

∇ · (εu) = 0

[
A BT

B −βC

] [
u
p

]
=

[
f
g

]

A → DG discretization of the curl-curl operator;
for IP-DG methods: A = V − F − kFT + αS

B → DG discretization of the divergence-free constraint

C → penalization of the jumps of p:
∑
f ∈Fh

β h−1[[p]][[q]]

A and C are positive semidefinite (“large” kernel)

Non-singular overall system
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Matrix Form

Indefinite Problem and Eigenvalue Problem

∇× (µ−1∇× u)− ω2εu = f ∇× (µ−1∇× u) = ω2εu

[A− ω2M]u = f Au = ω2M u

A → DG discretization of the curl-curl operator; positive
semidefinite, symmetric for symmetric methods

M → mass matrix; block diagonal, symmetric and positive definite

A− ω2M non singular (indefinite), provided that ω2 is not a discrete
eigenvalue of the pencil (A|M)
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Solvers
Literature on conforming methods (almost nothing available for DG)

Mixed Problem
I general saddle point problems: survey [Benzi, Golub & Liesen, 2005]
I Maxwell: DD precond. for augmented formulation [Hu & Zou, 2004];

Maxwell: block diagonal preconditioner [Greif & Schötzau, 2007]

Indefinite Problem
I multigrid [Gopalakrishnan, Pasciak and Demkowicz, 2003-04]

A Simpler (Coercive) Model Problem

∇× (µ−1∇× u) + εu = f

I domain decomposition [Alonso & Valli, 1999]
I multigrid [Hiptmair, 1998], [Arnold, Falk & Winther, 2000],

[Reitzinger & Schöberl, 2002]

Eigenvalue Problem
I multigrid projected PINVIT [Hiptmair & Neymeyr, 2002]
I preconditioned shift-and-invert Lanczos, Jacobi-Davidson

[Arbenz & Geus, 1999-2005], [Simoncini, 2003]
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Conclusions

For the Poisson problem: extension to DG-FEM of solution
techniques already studied for conforming methods with variants
either in their formulation or in the analysis

For Maxwell’s problems: the same approach could be used (in this
case, the literature for conforming methods is much less developed);
simpler (coercive) model problem: ∇× (µ−1∇× u) + εu = f

A current project: DG discretization of the Helmholtz problem

−∆u − k2u = 0 in Ω, ∇u · n− iωu = g on ∂Ω

with local approximating spaces made of linear combinations of
plane waves

∑p
k=1 ak exp(iωdk · x) (instead of polynomials); here,

the choice of the plane wave directions dk also affects the
conditioning

DG-FEM provide “complicated” test cases
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For Maxwell’s problems: the same approach could be used (in this
case, the literature for conforming methods is much less developed);
simpler (coercive) model problem: ∇× (µ−1∇× u) + εu = f

A current project: DG discretization of the Helmholtz problem

−∆u − k2u = 0 in Ω, ∇u · n− iωu = g on ∂Ω

with local approximating spaces made of linear combinations of
plane waves

∑p
k=1 ak exp(iωdk · x) (instead of polynomials); here,

the choice of the plane wave directions dk also affects the
conditioning

DG-FEM provide “complicated” test cases
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