Linear algebra problems arising in discontinuous Galerkin finite element discretizations

Ilaria Perugia
Dipartimento di Matematica - Università di Pavia, Italy http://www-dimat.unipv.it/perugia

INdAM Workshop on Structured Linear Algebra Problems
Cortona, September 15-19, 2008

Outline

- Introduction to discontinuous Galerkin (DG) FEM
- DG-FEM for the Poisson problem
- formulation of DG methods
- matrix form
- survey of the literature on solvers
- DG-FEM for Maxwell's problems
- mixed, indefinite and eigenvalue problems

Introduction to DG-FEM

DG-FEM are finite element methods based on completely discontinuous finite element spaces

Ingredients

- $\mathcal{T}_{h}=\{K\}$ partition of the domain Ω
- $\mathcal{P}^{\ell}\left(\mathcal{T}_{h}\right)=$ piecewise polynomials of degree ℓ in each element possibly discontinuous across interelement boundaries
- Local variational formulation (element-by-element) \rightarrow interelement continuity conditions imposed within the variational formulation (no special boundary degrees of freedom, no Lagrange multipliers)

Introduction to DG-FEM

Main Features

- Wide range of PDE's treated within the same unified framework
- Flexibility in the mesh design \rightarrow good for adaptivity
- non-matching grids (hanging nodes)
- non-uniform approximation degrees

- Block-diagonal (even diagonal) mass matrices
- Drawback: high number of degrees of freedom

DG for the Poisson Problem

The Poisson Problem

Given $f \in L^{2}(\Omega)$ and $g_{\mathcal{D}} \in H^{1 / 2}(\Omega)$, find $u \in H^{1}(\Omega)$ s.t.

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \subset \mathbb{R}^{2} \\
u & =g_{\mathcal{D}} & & \text { on } \partial \Omega
\end{aligned}
$$

DG for the Poisson Problem

The Poisson Problem

Given $f \in L^{2}(\Omega)$ and $g_{\mathcal{D}} \in H^{1 / 2}(\Omega)$, find $u \in H^{1}(\Omega)$ s.t.

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \subset \mathbb{R}^{2} \\
u & =g_{\mathcal{D}} & & \text { on } \partial \Omega
\end{aligned}
$$

Variational Formulation

Find $u \in H^{1}(\Omega)$ with $u=g_{\mathcal{D}}$ on $\partial \Omega$ s.t.

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v \quad \forall v \in H_{0}^{1}(\Omega)
$$

DG for the Poisson Problem

The Poisson Problem

Given $f \in L^{2}(\Omega)$ and $g_{\mathcal{D}} \in H^{1 / 2}(\Omega)$, find $u \in H^{1}(\Omega)$ s.t.

$$
\begin{array}{rll}
-\Delta u & =f & \\
\text { in } \Omega \subset \mathbb{R}^{2} \\
u & =g_{\mathcal{D}} & \\
\text { on } \partial \Omega
\end{array}
$$

Variational Formulation

Find $u \in H^{1}(\Omega)$ with $u=g_{\mathcal{D}}$ on $\partial \Omega$ s.t.

$$
\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v \quad \forall v \in H_{0}^{1}(\Omega)
$$

For continuous FE spaces: $\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h}=\int_{\Omega} f v_{h} \rightarrow$ standard FEM

DG for the Poisson Problem

- \mathcal{T}_{h} partition of the domain; \mathcal{F}_{h} set of all edges (faces in 3D); $\mathcal{F}_{h}^{\mathcal{I}}, \mathcal{F}_{h}^{\mathcal{B}}$ sets of all interior and boundary edges, resp.

DG for the Poisson Problem

- \mathcal{T}_{h} partition of the domain; \mathcal{F}_{h} set of all edges (faces in 3D); $\mathcal{F}_{h}^{\mathcal{I}}, \mathcal{F}_{h}^{\mathcal{B}}$ sets of all interior and boundary edges, resp.
- $V_{h}=\mathcal{P}^{\ell}\left(\mathcal{T}_{h}\right)$ possibly discontinuous across interelement boundaries

$$
V_{h} \not \subset H_{0}^{1}(\Omega)
$$

DG for the Poisson Problem

- \mathcal{T}_{h} partition of the domain; \mathcal{F}_{h} set of all edges (faces in 3D); $\mathcal{F}_{h}^{\mathcal{I}}, \mathcal{F}_{h}^{\mathcal{B}}$ sets of all interior and boundary edges, resp.
- $V_{h}=\mathcal{P}^{\ell}\left(\mathcal{T}_{h}\right)$ possibly discontinuous across interelement boundaries

$$
V_{h} \not \subset H_{0}^{1}(\Omega)
$$

$$
-\Delta u=f \quad \text { in } \Omega \subset \mathbb{R}^{2}, \quad u=g_{\mathcal{D}} \quad \text { on } \partial \Omega
$$

DG for the Poisson Problem

- \mathcal{T}_{h} partition of the domain; \mathcal{F}_{h} set of all edges (faces in 3D); $\mathcal{F}_{h}^{\mathcal{I}}, \mathcal{F}_{h}^{\mathcal{B}}$ sets of all interior and boundary edges, resp.
- $V_{h}=\mathcal{P}^{\ell}\left(\mathcal{T}_{h}\right)$ possibly discontinuous across interelement boundaries

$$
V_{h} \not \subset H_{0}^{1}(\Omega)
$$

$$
-\Delta u=f \quad \text { in } \Omega \subset \mathbb{R}^{2}, \quad u=g_{\mathcal{D}} \quad \text { on } \partial \Omega
$$

- Multiply by $v_{h} \in V_{h}$ and integrate by parts in each element

$$
\int_{K} \nabla u \cdot \nabla v_{h}-\int_{\partial K} \nabla u \cdot \mathbf{n}_{K} v_{h}=\int_{K} f v_{h}
$$

DG for the Poisson Problem

- \mathcal{T}_{h} partition of the domain; \mathcal{F}_{h} set of all edges (faces in 3D); $\mathcal{F}_{h}^{\mathcal{I}}, \mathcal{F}_{h}^{\mathcal{B}}$ sets of all interior and boundary edges, resp.
- $V_{h}=\mathcal{P}^{\ell}\left(\mathcal{T}_{h}\right)$ possibly discontinuous across interelement boundaries

$$
V_{h} \not \subset H_{0}^{1}(\Omega)
$$

$$
-\Delta u=f \quad \text { in } \Omega \subset \mathbb{R}^{2}, \quad u=g_{\mathcal{D}} \quad \text { on } \partial \Omega
$$

- Multiply by $v_{h} \in V_{h}$ and integrate by parts in each element

$$
\int_{K} \nabla u \cdot \nabla v_{h}-\int_{\partial K} \nabla u \cdot \mathbf{n}_{K} v_{h}=\int_{K} f v_{h}
$$

- Sum over all elements

$$
\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u \cdot \nabla v_{h}-\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} \nabla u \cdot \mathbf{n}_{K} v_{h}=\int_{\Omega} f v_{h}
$$

DG for the Poisson Problem

$$
\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u \cdot \nabla v_{h}-\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} \nabla u \cdot \mathbf{n}_{K} v_{h}=\int_{\Omega} f v_{h}
$$

DG for the Poisson Problem

$$
\sum_{K \in \mathcal{I}_{h}} \int_{K} \nabla u \cdot \nabla v_{h}-\sum_{K \in \mathcal{I}_{h}} \int_{\partial K} \nabla u \cdot \mathbf{n}_{K} v_{h}=\int_{\Omega} f v_{h}
$$

Key formula

$$
\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} \nabla u \cdot \mathbf{n}_{K} v_{h}=\sum_{f \in \mathcal{F}_{h}} \int_{f}\{\nabla u\} \cdot \llbracket v_{h} \rrbracket_{N}+\underbrace{\sum_{f \in \mathcal{F}_{h}^{\mathcal{I}}} \int_{f} \llbracket \nabla u \rrbracket_{N}\left\{\left\{v_{h}\right\}\right\}}_{=0}
$$

Averages and jumps on interior edges

- $\{v\}\}:=\left(v^{+}+v^{-}\right) / 2$
- $\llbracket v \rrbracket_{N}:=v^{+} \mathbf{n}^{+}+v^{-} \mathbf{n}^{-}$

$$
\begin{aligned}
\{\mathbf{q}\} & :=\left(\mathbf{q}^{+}+\mathbf{q}^{-}\right) / 2 \\
\llbracket \mathbf{q} \rrbracket_{N} & :=\mathbf{q}^{+} \cdot \mathbf{n}^{+}+\mathbf{q}^{-} \cdot \mathbf{n}^{-}
\end{aligned}
$$

Averages and jumps on boundary edges

- $\{\mathbf{q}\}=\mathbf{q}$
- $\llbracket v \rrbracket_{N}:=v \mathbf{n}, \llbracket u \rrbracket_{N}:=\left(u-g_{\mathcal{D}}\right) \mathbf{n}$

DG for the Poisson Problem

DG Methods of the Interior Penalty Family (IP-DG)

$$
\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N}
$$

$$
=\int_{\Omega} f V_{h}
$$

DG for the Poisson Problem

DG Methods of the Interior Penalty Family (IP-DG)

$$
\begin{array}{rlr}
\sum_{K \in \mathcal{T}_{h}} & \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& -k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}\right. & =\int_{\Omega} f v_{h}
\end{array}
$$

DG for the Poisson Problem

DG Methods of the Interior Penalty Family (IP-DG)

$$
\begin{aligned}
& \left.\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& \quad-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}\right.
\end{aligned}
$$

DG for the Poisson Problem

DG Methods of the Interior Penalty Family (IP-DG)

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& \quad-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}\right.
\end{aligned}
$$

$k=1$ SIP-DG [Douglas \& Dupont, 1976], [Wheeler, 1978], [Arnold, 1982]
$k=-1$ NIP-DG [Baumann \& Oden,1998], [Rivière, Wheeler \& Girault, 1999]

DG for the Poisson Problem

DG Methods of the Interior Penalty Family (IP-DG)

$$
\begin{aligned}
& \left.\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& \quad-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}
\end{aligned}
$$

$k=1$ SIP-DG [Douglas \& Dupont, 1976], [Wheeler, 1978], [Arnold, 1982]
$k=-1$ NIP-DG [Baumann \& Oden,1998], [Rivière, Wheeler \& Girault, 1999]
$\alpha>0$ stability parameter independent of the mesh size

DG for the Poisson Problem

DG Methods of the Interior Penalty Family (IP-DG)

$$
\begin{aligned}
& \left.\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& \quad-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}
\end{aligned}
$$

$k=1$ SIP-DG [Douglas \& Dupont, 1976], [Wheeler, 1978], [Arnold, 1982]
$k=-1$ NIP-DG [Baumann \& Oden,1998], [Rivière, Wheeler \& Girault, 1999]
$\alpha>0$ stability parameter independent of the mesh size

- Stability and convergence theory well established [Arnold, Brezzi, Cockburn \& Marini, 2002]

DG for the Poisson Problem

DG Methods of the Interior Penalty Family (IP-DG)

$$
\begin{aligned}
\sum_{K \in \mathcal{T}_{h}} & \left.\int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\| \nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
\quad & \left.-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\nabla_{h} v_{h}\right\}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha h^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}
\end{aligned}
$$

$k=1$ SIP-DG [Douglas \& Dupont, 1976], [Wheeler, 1978], [Arnold, 1982]
$k=-1$ NIP-DG [Baumann \& Oden, 1998], [Rivière, Wheeler \& Girault, 1999]
$\alpha>0$ stability parameter independent of the mesh size

- Stability and convergence theory well established
[Arnold, Brezzi, Cockburn \& Marini, 2002]
- For continuous FE spaces: $\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h}=\int_{\Omega} f v_{h} \rightarrow$ standard FEM

Matrix Form

IP-DG Methods
$\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}$

Matrix Form

IP-DG Methods

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& \quad-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\nabla_{h} v_{h}\right\}
\end{aligned}
$$

$$
\underbrace{\left[V-F-k F^{T}\right]}_{:=A} \mathbf{u}
$$

Matrix Form

IP-DG Methods

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& -k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}\right. \\
& \underbrace{\left[V-F-k F^{T}+\alpha S\right]}_{:=A} \mathbf{u}
\end{aligned}
$$

Matrix Form

IP-DG Methods

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}- \\
&-k \sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h} \\
& \underbrace{\left[V-F-k F^{T}+\alpha S\right]}_{:=A} \mathbf{u}=\mathbf{f}
\end{aligned}
$$

Matrix Form

IP-DG Methods

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}- \\
& \quad-k \sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
& \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h} \\
& \underbrace{\left[V-F-k F^{T}+\alpha S\right]}_{:=A} \mathbf{u}=\mathbf{f}
\end{aligned}
$$

- V and S symmetric, positive semidefinite; V block diagonal

Matrix Form

IP-DG Methods

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
&-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}\right. \\
& \underbrace{\left[V-F-k F^{T}+\alpha S\right]}_{:=A} \mathbf{u}=\mathbf{f}
\end{aligned}
$$

- V and S symmetric, positive semidefinite; V block diagonal
- A positive definite (provided that α is large enough for SIP)

Matrix Form

IP-DG Methods

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
&-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}\right. \\
& \underbrace{\left[V-F-k F^{T}+\alpha S\right]}_{:=A} \mathbf{u}=\mathbf{f}
\end{aligned}
$$

- V and S symmetric, positive semidefinite; V block diagonal
- A positive definite (provided that α is large enough for SIP)
- A symmetric for SIP, non-symmetric for NIP

Matrix Form

IP-DG Methods

$$
\begin{aligned}
& \sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h}-\sum_{f \in \mathcal{F}_{h}} \int_{f}\left\{\left\{\nabla u_{h}\right\}\right\} \cdot \llbracket v_{h} \rrbracket_{N} \\
&-k \sum_{f \in \mathcal{F}_{h}} \int_{f} \llbracket u_{h} \rrbracket_{N} \cdot\left\{\left\{\nabla_{h} v_{h}\right\}+\sum_{f \in \mathcal{F}_{h}} \int_{f} \alpha \mathrm{~h}^{-1} \llbracket u_{h} \rrbracket_{N} \cdot \llbracket v_{h} \rrbracket_{N}=\int_{\Omega} f v_{h}\right. \\
& \underbrace{\left[V-F-k F^{T}+\alpha S\right]}_{:=A} \mathbf{u}=\mathbf{f}
\end{aligned}
$$

- V and S symmetric, positive semidefinite; V block diagonal
- A positive definite (provided that α is large enough for SIP)
- A symmetric for SIP, non-symmetric for NIP
- A large, sparse, $\kappa_{2}(A) \sim h^{-2}$

Matrix Form

Matrix Form

$$
V+\alpha S
$$

Matrix Form

$$
V-F-k F^{T}+\alpha S=: A
$$

Solvers

- Domain decomposition (Schwarz) preconditioners
[Rusten, Vassilevski \& Winther, 1996], [Feng \& Karakashian, 2001],
[Lasser \& Toselli, 2003], [Brenner \& Wang, 2005],
[Antonietti \& Ayuso, 2007-08], [Dryja, Galvis \& Sarkis, 2007]
- Multigrid methods
[Gopalakrishnan and Kanschat, 2003-04], [Brenner \& Zhao, 2005], [Brenner \& Owens, 2005]
- Multilevel preconditioners with cG discretization at lowest level [Warsa, Benzi, Wareing \& Morel, 2004], [Antonietti \& Ayuso, 2007]
- Norm preconditioners
[Georgoulis \& Loghin, 2008]

Solvers

- Domain decomposition (Schwarz) preconditioners [Rusten, Vassilevski \& Winther, 1996]: overlapping DD for SIP within a precond. for conforming mixed problems
[Feng \& Karakashian, 2001], [Brenner \& Wang, 2005]: exact local solvers [Antonietti \& Ayuso, 2007-08]: inexact local solvers (more parallel, coarse solver either discont. or cont.)

Solvers

- Domain decomposition (Schwarz) preconditioners
[Rusten, Vassilevski \& Winther, 1996]: overlapping DD for SIP within a precond. for conforming mixed problems
[Feng \& Karakashian, 2001], [Brenner \& Wang, 2005]: exact local solvers [Antonietti \& Ayuso, 2007-08]: inexact local solvers (more parallel, coarse solver either discont. or cont.)
- Multigrid methods
[Gopalakrishnan and Kanschat, 2003-04]: variable V-cycle, J or GS smoothers [Brenner \& Zhao, 2005]: V, W, F-cycles, Richardson smoother [Kanschat, 2003]: block triang. precond. for DG in mixed form with MG-SIP in the $(2,2)$ block

Solvers

- Domain decomposition (Schwarz) preconditioners
[Rusten, Vassilevski \& Winther, 1996]: overlapping DD for SIP within a precond. for conforming mixed problems
[Feng \& Karakashian, 2001], [Brenner \& Wang, 2005]: exact local solvers [Antonietti \& Ayuso, 2007-08]: inexact local solvers (more parallel, coarse solver either discont. or cont.)
- Multigrid methods
[Gopalakrishnan and Kanschat, 2003-04]: variable V-cycle, J or GS smoothers [Brenner \& Zhao, 2005]: V, W, F-cycles, Richardson smoother [Kanschat, 2003]: block triang. precond. for DG in mixed form with MG-SIP in the $(2,2)$ block
- Multilevel preconditioners with cG discretization at lowest level [Warsa, Benzi, Wareing \& Morel, 2004]: mixed form/cG for Laplacian as "coarse grid" correction (PCG, AMG)

Solvers

- Domain decomposition (Schwarz) preconditioners
[Rusten, Vassilevski \& Winther, 1996]: overlapping DD for SIP within a precond. for conforming mixed problems
[Feng \& Karakashian, 2001], [Brenner \& Wang, 2005]: exact local solvers [Antonietti \& Ayuso, 2007-08]: inexact local solvers (more parallel, coarse solver either discont. or cont.)
- Multigrid methods
[Gopalakrishnan and Kanschat, 2003-04]: variable V-cycle, J or GS smoothers [Brenner \& Zhao, 2005]: V, W, F-cycles, Richardson smoother [Kanschat, 2003]: block triang. precond. for DG in mixed form with MG-SIP in the $(2,2)$ block
- Multilevel preconditioners with cG discretization at lowest level [Warsa, Benzi, Wareing \& Morel, 2004]: mixed form/cG for Laplacian as "coarse grid" correction (PCG, AMG)
- Norm preconditioners
[Georgoulis \& Loghin, 2008]: norm matrix as precond.

Solvers: Two Remarks

(1) Schwarz preconditioners

One of the conditions for convergence of iterative methods is a stable splitting of V_{h} as sum of the subdomain-related subspaces and the coarse grid-related subspace.

Solvers: Two Remarks

(1) Schwarz preconditioners

One of the conditions for convergence of iterative methods is a stable splitting of V_{h} as sum of the subdomain-related subspaces and the coarse grid-related subspace.
For cG and non-overlapping subdomain partitions, the stable splitting condition does not hold \rightarrow spectral bounds of order H / h are obtained with a minimum overlap.

Solvers: Two Remarks

(1) Schwarz preconditioners

One of the conditions for convergence of iterative methods is a stable splitting of V_{h} as sum of the subdomain-related subspaces and the coarse grid-related subspace.
For cG and non-overlapping subdomain partitions, the stable splitting condition does not hold \rightarrow spectral bounds of order H / h are obtained with a minimum overlap.
For DG, spectral bounds of order H / h are obtained also for non-overlapping subdomain partitions.

Solvers: Two Remarks

(1) Schwarz preconditioners

One of the conditions for convergence of iterative methods is a stable splitting of V_{h} as sum of the subdomain-related subspaces and the coarse grid-related subspace.
For cG and non-overlapping subdomain partitions, the stable splitting condition does not hold \rightarrow spectral bounds of order H / h are obtained with a minimum overlap.
For DG, spectral bounds of order H / h are obtained also for non-overlapping subdomain partitions.
(2) GMRES convergence theory

For non-symmetric linear systems, one of the conditions required by the theory is the positivity of the symmetric part of the operator
[Eisenstat, Elmann \& Schultz, 1983].

Solvers: Two Remarks

(1) Schwarz preconditioners

One of the conditions for convergence of iterative methods is a stable splitting of V_{h} as sum of the subdomain-related subspaces and the coarse grid-related subspace.
For cG and non-overlapping subdomain partitions, the stable splitting condition does not hold \rightarrow spectral bounds of order H / h are obtained with a minimum overlap.
For DG, spectral bounds of order H / h are obtained also for non-overlapping subdomain partitions.
(2) GMRES convergence theory

For non-symmetric linear systems, one of the conditions required by the theory is the positivity of the symmetric part of the operator
[Eisenstat, Elmann \& Schultz, 1983].
NIP-DG provides an example in which, although the symmetric part of the operator has negative eigenvalues, the convergence of GMRES takes place all the same.

Maxwell's Problems

- Mixed problem (low-frequency approximation of the time-harmonic Maxwell's problem in insulating materials)

$$
\begin{array}{ll}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} & \text { in } \Omega \\
\nabla \cdot(\varepsilon \mathbf{u})=0 & \text { in } \Omega \\
\mathbf{n} \times \mathbf{u}=\mathbf{0}, \quad p=0 & \text { on } \partial \Omega
\end{array}
$$

(continuity of the tangential component of \mathbf{u} and continuity of p across interfaces)

Maxwell's Problems

- Mixed problem (low-frequency approximation of the time-harmonic Maxwell's problem in insulating materials)

$$
\begin{array}{ll}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} & \text { in } \Omega \\
\nabla \cdot(\varepsilon \mathbf{u})=0 & \text { in } \Omega \\
\mathbf{n} \times \mathbf{u}=\mathbf{0}, \quad p=0 & \text { on } \partial \Omega
\end{array}
$$

(continuity of the tangential component of \mathbf{u} and continuity of p across interfaces)

- Indefinite problem (full time-harmonic Maxwell's problem)

$$
\begin{array}{ll}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f} & \text { in } \Omega \\
\mathbf{n} \times \mathbf{u}=\mathbf{0} & \text { on } \partial \Omega
\end{array}
$$

Maxwell's Problems

- Mixed problem (low-frequency approximation of the time-harmonic Maxwell's problem in insulating materials)

$$
\begin{array}{ll}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} & \text { in } \Omega \\
\nabla \cdot(\varepsilon \mathbf{u})=0 & \text { in } \Omega \\
\mathbf{n} \times \mathbf{u}=\mathbf{0}, \quad p=0 & \text { on } \partial \Omega
\end{array}
$$

(continuity of the tangential component of \mathbf{u} and continuity of p across interfaces)

- Indefinite problem (full time-harmonic Maxwell's problem)

$$
\begin{array}{ll}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f} & \text { in } \Omega \\
\mathbf{n} \times \mathbf{u}=\mathbf{0} & \text { on } \partial \Omega
\end{array}
$$

- Eigenvalue problem

$$
\begin{array}{ll}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)=\omega^{2} \varepsilon \mathbf{u} & \text { in } \Omega \\
\mathbf{n} \times \mathbf{u}=\mathbf{0} & \text { on } \partial \Omega
\end{array}
$$

Maxwell's Problems

DG Discretizations

- Key ingredient: DG discretization of the curl-curl operator
- similar to DG discretization of the Laplacian (here: penalization of the tangential jumps of \mathbf{u})
- complex vector-valued fields
- "large" kernel

Maxwell's Problems

DG Discretizations

- Key ingredient: DG discretization of the curl-curl operator
- similar to DG discretization of the Laplacian (here: penalization of the tangential jumps of \mathbf{u})
- complex vector-valued fields
- "large" kernel
- For the mixed problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

- imposition of the divergence-free constraint in a DG fashion
- penalization of the jumps of p
- balancing \mathbf{V}_{h} and Q_{h} (polynomials of degree ℓ for \mathbf{u} and $\ell+1$ for p)
- theoretical analysis based on an underlying stable discretization with conforming elements [Houston, Perugia \& Schötzau, 2005]

Maxwell's Problems

DG Discretizations

- For the indefinite problem

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f}
$$

- DG discretization straightforward (recall: block diagonal mass matrix)
- theoretical analysis: same approach as for conforming discretizations, with the additional difficulty due to non-conformity [Houston, Perugia, Schneebeli \& Schötzau, 2005]

Maxwell's Problems

DG Discretizations

- For the indefinite problem

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f}
$$

- DG discretization straightforward (recall: block diagonal mass matrix)
- theoretical analysis: same approach as for conforming discretizations, with the additional difficulty due to non-conformity [Houston, Perugia, Schneebeli \& Schötzau, 2005]
- For the eigenvalue problem

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)=\omega^{2} \varepsilon \mathbf{u}
$$

- DG discretization straightforward
- theoretical analysis: difficulties due to the combination of presence of a kernel and non-conformity [Buffa \& Perugia, 2006]

Matrix Form

Mixed Problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

Matrix Form

Mixed Problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -\beta C
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

Matrix Form

Mixed Problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -\beta C
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

- $A \rightarrow$ DG discretization of the curl-curl operator; for IP-DG methods: $A=V-F-k F^{T}+\alpha S$

Matrix Form

Mixed Problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -\beta C
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

- $A \rightarrow \mathrm{DG}$ discretization of the curl-curl operator; for IP-DG methods: $A=V-F-k F^{T}+\alpha S$
- $B \rightarrow$ DG discretization of the divergence-free constraint

Matrix Form

Mixed Problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -\beta C
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

- $A \rightarrow$ DG discretization of the curl-curl operator; for IP-DG methods: $A=V-F-k F^{T}+\alpha S$
- $B \rightarrow$ DG discretization of the divergence-free constraint
- $C \rightarrow$ penalization of the jumps of $p: \sum_{f \in \mathcal{F}_{h}} \beta \mathrm{~h}^{-1} \llbracket p \rrbracket \llbracket q \rrbracket$

Matrix Form

Mixed Problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -\beta C
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

- $A \rightarrow$ DG discretization of the curl-curl operator; for IP-DG methods: $A=V-F-k F^{T}+\alpha S$
- $B \rightarrow$ DG discretization of the divergence-free constraint
- $C \rightarrow$ penalization of the jumps of $p: \sum_{f \in \mathcal{F}_{h}} \beta \mathrm{~h}^{-1} \llbracket p \rrbracket \llbracket q \rrbracket$
- A and C are positive semidefinite ("large" kernel)

Matrix Form

Mixed Problem

$$
\begin{aligned}
& \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\varepsilon \nabla p=\mathbf{f} \\
& \nabla \cdot(\varepsilon \mathbf{u})=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & -\beta C
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{g}
\end{array}\right]
$$

- $A \rightarrow$ DG discretization of the curl-curl operator; for IP-DG methods: $A=V-F-k F^{T}+\alpha S$
- $B \rightarrow$ DG discretization of the divergence-free constraint
- $C \rightarrow$ penalization of the jumps of $p: \sum_{f \in \mathcal{F}_{h}} \beta \mathrm{~h}^{-1} \llbracket p \rrbracket \llbracket q \rrbracket$
- A and C are positive semidefinite ("large" kernel)
- Non-singular overall system

Matrix Form

Indefinite Problem and Eigenvalue Problem

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f} \quad \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)=\omega^{2} \varepsilon \mathbf{u}
$$

Matrix Form

Indefinite Problem and Eigenvalue Problem

$$
\begin{array}{rl}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f} & \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)=\omega^{2} \varepsilon \mathbf{u} \\
{\left[A-\omega^{2} M\right] \mathbf{u}=\mathbf{f}} & A \mathbf{u}=\omega^{2} M \mathbf{u}
\end{array}
$$

Matrix Form

Indefinite Problem and Eigenvalue Problem

$$
\begin{array}{rl}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f} & \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)=\omega^{2} \varepsilon \mathbf{u} \\
{\left[A-\omega^{2} M\right] \mathbf{u}=\mathbf{f}} & A \mathbf{u}=\omega^{2} M \mathbf{u}
\end{array}
$$

- $A \rightarrow \mathrm{DG}$ discretization of the curl-curl operator; positive semidefinite, symmetric for symmetric methods

Matrix Form

Indefinite Problem and Eigenvalue Problem

$$
\begin{array}{rl}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f} & \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)=\omega^{2} \varepsilon \mathbf{u} \\
{\left[A-\omega^{2} M\right] \mathbf{u}=\mathbf{f}} & A \mathbf{u}=\omega^{2} M \mathbf{u}
\end{array}
$$

- $A \rightarrow \mathrm{DG}$ discretization of the curl-curl operator; positive semidefinite, symmetric for symmetric methods
- $M \rightarrow$ mass matrix; block diagonal, symmetric and positive definite

Matrix Form

Indefinite Problem and Eigenvalue Problem

$$
\begin{array}{rl}
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)-\omega^{2} \varepsilon \mathbf{u}=\mathbf{f} & \nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)=\omega^{2} \varepsilon \mathbf{u} \\
{\left[A-\omega^{2} M\right] \mathbf{u}=\mathbf{f}} & A \mathbf{u}=\omega^{2} M \mathbf{u}
\end{array}
$$

- $A \rightarrow \mathrm{DG}$ discretization of the curl-curl operator; positive semidefinite, symmetric for symmetric methods
- $M \rightarrow$ mass matrix; block diagonal, symmetric and positive definite
- $A-\omega^{2} M$ non singular (indefinite), provided that ω^{2} is not a discrete eigenvalue of the pencil $(A \mid M)$

Solvers

Literature on conforming methods (almost nothing available for DG)

Solvers

Literature on conforming methods (almost nothing available for DG)

- Mixed Problem
- general saddle point problems: survey [Benzi, Golub \& Liesen, 2005]
- Maxwell: DD precond. for augmented formulation [Hu \& Zou, 2004]; block diagonal preconditioner [Greif \& Schötzau, 2007]

Solvers

Literature on conforming methods (almost nothing available for DG)

- Mixed Problem
- general saddle point problems: survey [Benzi, Golub \& Liesen, 2005]
- Maxwell: DD precond. for augmented formulation [Hu \& Zou, 2004]; block diagonal preconditioner [Greif \& Schötzau, 2007]
- Indefinite Problem
- multigrid [Gopalakrishnan, Pasciak and Demkowicz, 2003-04]

Solvers

Literature on conforming methods (almost nothing available for DG)

- Mixed Problem
- general saddle point problems: survey [Benzi, Golub \& Liesen, 2005]
- Maxwell: DD precond. for augmented formulation [Hu \& Zou, 2004]; block diagonal preconditioner [Greif \& Schötzau, 2007]
- Indefinite Problem
- multigrid [Gopalakrishnan, Pasciak and Demkowicz, 2003-04]
- A Simpler (Coercive) Model Problem

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)+\varepsilon \mathbf{u}=\mathbf{f}
$$

- domain decomposition [Alonso \& Valli, 1999]
- multigrid [Hiptmair, 1998], [Arnold, Falk \& Winther, 2000], [Reitzinger \& Schöberl, 2002]

Solvers

Literature on conforming methods (almost nothing available for DG)

- Mixed Problem
- general saddle point problems: survey [Benzi, Golub \& Liesen, 2005]
- Maxwell: DD precond. for augmented formulation [Hu \& Zou, 2004]; block diagonal preconditioner [Greif \& Schötzau, 2007]
- Indefinite Problem
- multigrid [Gopalakrishnan, Pasciak and Demkowicz, 2003-04]
- A Simpler (Coercive) Model Problem

$$
\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)+\varepsilon \mathbf{u}=\mathbf{f}
$$

- domain decomposition [Alonso \& Valli, 1999]
- multigrid [Hiptmair, 1998], [Arnold, Falk \& Winther, 2000], [Reitzinger \& Schöberl, 2002]
- Eigenvalue Problem
- multigrid projected PINVIT [Hiptmair \& Neymeyr, 2002]
- preconditioned shift-and-invert Lanczos, Jacobi-Davidson [Arbenz \& Geus, 1999-2005], [Simoncini, 2003]

Conclusions

- For the Poisson problem: extension to DG-FEM of solution techniques already studied for conforming methods with variants either in their formulation or in the analysis

Conclusions

- For the Poisson problem: extension to DG-FEM of solution techniques already studied for conforming methods with variants either in their formulation or in the analysis
- For Maxwell's problems: the same approach could be used (in this case, the literature for conforming methods is much less developed); simpler (coercive) model problem: $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)+\varepsilon \mathbf{u}=\mathbf{f}$

Conclusions

- For the Poisson problem: extension to DG-FEM of solution techniques already studied for conforming methods with variants either in their formulation or in the analysis
- For Maxwell's problems: the same approach could be used (in this case, the literature for conforming methods is much less developed); simpler (coercive) model problem: $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)+\varepsilon \mathbf{u}=\mathbf{f}$
- A current project: DG discretization of the Helmholtz problem

$$
-\Delta u-k^{2} u=0 \quad \text { in } \Omega, \quad \nabla u \cdot \mathbf{n}-i \omega u=g \quad \text { on } \partial \Omega
$$

with local approximating spaces made of linear combinations of plane waves $\sum_{k=1}^{p} a_{k} \exp \left(i \omega \mathbf{d}_{k} \cdot \mathbf{x}\right)$ (instead of polynomials); here, the choice of the plane wave directions \mathbf{d}_{k} also affects the conditioning

Conclusions

- For the Poisson problem: extension to DG-FEM of solution techniques already studied for conforming methods with variants either in their formulation or in the analysis
- For Maxwell's problems: the same approach could be used (in this case, the literature for conforming methods is much less developed); simpler (coercive) model problem: $\nabla \times\left(\mu^{-1} \nabla \times \mathbf{u}\right)+\varepsilon \mathbf{u}=\mathbf{f}$
- A current project: DG discretization of the Helmholtz problem

$$
-\Delta u-k^{2} u=0 \quad \text { in } \Omega, \quad \nabla u \cdot \mathbf{n}-i \omega u=g \quad \text { on } \partial \Omega
$$

with local approximating spaces made of linear combinations of plane waves $\sum_{k=1}^{p} a_{k} \exp \left(i \omega \mathbf{d}_{k} \cdot \mathbf{x}\right)$ (instead of polynomials); here, the choice of the plane wave directions \mathbf{d}_{k} also affects the conditioning

- DG-FEM provide "complicated" test cases

