
Parallel solution of linear systems and optimal
multiplication of polynomials over GF(2)

I.V. Oseledets

Institute of Numerical Mathematics, Moscow

15 September 2008.

Linear system

Bx = f .

Linear system

Bx = f .

B is sparse.

Linear system

Bx = f .

B is sparse.

Known methods
Conjugate gradients

GMRES

Lanczos

Number of steps: NiterN, usually we do not allow Niter = N

Linear system

Bx = f .

B is sparse.

Finite fields
GF (2) = {0, 1}, no norm:
x = (1, 1, 1, 1)>, ||x || = 0

Number of iterations is O(N). And if N = 108?

We focus on GF(2) — no stability issues
Can use any “unstable” algorithm.

Parallel solution of linear systems, Toeplitz matrices and
polynomial multiplication

We focus on GF(2) — no stability issues
Can use any “unstable” algorithm.

Parallel solution of linear systems, Toeplitz matrices and
polynomial multiplication

Wiedemann algorithm

Minimal polynomial:
∑

k ckBk = 0,
Instead: two vectors x , y and solve for∑

j(x
>B i+jy)cj = 0).

Hankel system! If found, cj — coefficient of minimal polynomial of
B

Wiedemann algorithm

Minimal polynomial:
∑

k ckBk = 0,
Instead: two vectors x , y and solve for∑

j(x
>B i+jy)cj = 0).

Hankel system! If found, cj — coefficient of minimal polynomial of
B

For parallel computations — block version

Coppersmith algorithm

ai = X>B iY , i = 0, . . . ,
Kernel of block Hankel matrix:∑

j ai+jcj = 0.

For parallel computations — block version

Coppersmith algorithm

ai = X>B iY , i = 0, . . . ,
Kernel of block Hankel matrix:∑

j ai+jcj = 0.

Simple justification:

(X>B i−1)
∑
j=0

B j+1Ycj = 0,

If block Krylov subspace X>B i has full dimension, then

Bw = 0, w =
∑
j=0

B jYcj .

Simple justification:

(X>B i−1)
∑
j=0

B j+1Ycj = 0,

If block Krylov subspace X>B i has full dimension, then

Bw = 0, w =
∑
j=0

B jYcj .

Many interesting questions ...

Dimensions of binary block Krylov subspaces

Matrix-by-vector product efficiently

Kernel of the block Hankel matrix

We will focus only on the last

Block Hankel-kernel ∑
j

Ai+jcj = 0,

Ai is q × q, usually q = 512, 1024.

GF(2): Challenge for Toeplitz-Hankel specialists!
O(N logα N) methods are hard to find.

Block Hankel-kernel ∑
j

Ai+jcj = 0,

Ai is q × q, usually q = 512, 1024.

GF(2): Challenge for Toeplitz-Hankel specialists!
O(N logα N) methods are hard to find.

No Fourier transform

No nonsingularity of leading submatrices (even for HH∗)

Division-free algorithms

D.Coppersmith, 1994 — O(N2)

E. Thome, Fast computations of linear generators for matrix
sequences 2001 — O(M(n) log n),

M(n) — time to multiply two matrix polynomials with q × q matrix
coefficients.

That is what we are going to discuss

Classical polynomial multiplication problem:

Main problem

c(x) = a(x)b(x),

a(x) =
∑n−1

i=0 aix i , b(x) =
∑n−1

i=0 bix i .

Coefficients can be complex, integer, matrices ...

Main problem

c(x) = a(x)b(x),

a(x) =
∑n−1

i=0 aix i , b(x) =
∑n−1

i=0 bix i .

Schoolbook: n2 multiplications, n(n − 1)/2 additions.

Usually
multiplication time is much large addition time.

Main problem

c(x) = a(x)b(x),

a(x) =
∑n−1

i=0 aix i , b(x) =
∑n−1

i=0 bix i .

You can ask: What is unusual here?

Fourier: interpolation

«Forward» step: c(w j) = a(w j)b(w j), j = 0, . . . , 2n − 1
w = e

2πi
2n−1

«Backward» step: Inverse Fourier transform.

Computational complexity

O(n log n) operations.

Main problem

c(x) = a(x)b(x),

a(x) =
∑n−1

i=0 aix i , b(x) =
∑n−1

i=0 bix i .

It work only in complex field.
And what in GF(2), only two elements available?

There are 2n − 1 roots of unity — Fourier.

There are 2n − 1 different elements — Toom-Cook,
a(i) = b(i)c(i), i = 0, ..., . . . 2n − 2. Division is needed.

Karatsuba-type algorithms.

Main problem

c(x) = a(x)b(x),

a(x) =
∑n−1

i=0 aix i , b(x) =
∑n−1

i=0 bix i .

The most interesting case — field with two elements, 0 − 1, which
we will study.

Please, remember that
a − b = a + b.

Main problem

c(x) = a(x)b(x),

a(x) =
∑n−1

i=0 aix i , b(x) =
∑n−1

i=0 bix i .

The most interesting case — field with two elements, 0 − 1, which
we will study.

Please, remember that
a − b = a + b.

Karatsuba algorithm

a(x) = a0 + a1x , b(x) = b0 + b1x ,
p0 = a0b0, p1 = (a0 + b0)(a1 + b1), p2 = a1b1,

c0 = p0, c1 = p0 + p1 + p2, c2 = p2.

Karatsuba algorithm

a(x) = a0 + a1x , b(x) = b0 + b1x ,
p0 = a0b0, p1 = (a0 + b0)(a1 + b1), p2 = a1b1,

c0 = p0, c1 = p0 + p1 + p2, c2 = p2.

Requires 3 multiplications and 4 additions.

Karatsuba algorithm

a(x) = a0 + a1x , b(x) = b0 + b1x ,
p0 = a0b0, p1 = (a0 + b0)(a1 + b1), p2 = a1b1,

c0 = p0, c1 = p0 + p1 + p2, c2 = p2.

Requires 3 multiplications and 4 additions.

What for?

Recursive application: O(nlog2 3) ≈ O(n1.58)

Matrix polynomials: ai , bi — binary matrices
Then multiplication time is thousand times more than addition time

What for?

Recursive application: O(nlog2 3) ≈ O(n1.58)

Matrix polynomials: ai , bi — binary matrices
Then multiplication time is thousand times more than addition time

We will talk about algorithm with minimal number of multiplication
over GF(2).

There are no roots of 1, no divisions, we can not even divide by
2!(a + a = 0).

As an application, we consider:

Matrix polynomial multiplication

c(x) = a(x)b(x), Coefficients ai — bit matrices of size, say
512× 512.

Karatsuba-like algorithms for high degrees
n = 3 — 6 multiplications,
n = 4 — 9 multiplications,
n = 5 — 13 multiplications,
n = 6 — 17 multiplications.

These are results from year 2005!
Montogomery P.L., Five, six and seven Karatsuba-like

formulae, IEEE Trans on Computers.
What to say about practical algorithms for the multiplication of

polynomials of degree, for example, 100.

A general approach was obtained for the construction of
algorithms with minimal number of multiplications.

Code generator was written (for n = 128 the program length is
∼ 25000 lines
It is faster (10 times) than recursive Karatsuba.

Let us give main ideas.

General scheme for bilinear algorithms
Output vector: ci , length 2n − 1
Input vector: ai , bi length n.

General scheme for bilinear algorithms
Output vector: ci , length 2n − 1
Input vector: ai , bi length n.

All fast algorithms has the form

c = V ((Ua) ◦ (Ub)) ,

U, V — matrices of size r × n and m × r respectively,
◦ — elementwise product of vectors.

r — rank of the algorithm (minimal number of multiplications).

All fast algorithms has the form

c = V ((Ua) ◦ (Ub)) ,

It should be an identity: setting a = ei , b = ej :

Trilinear decomposition:

Cijk = (x ix j)k = δ(i+j)k =

r∑
α=1

uiαujαwkα.

It should be an identity: setting a = ei , b = ej :

Trilinear decomposition:

Cijk = (x ix j)k = δ(i+j)k =

r∑
α=1

uiαujαwkα.

Three-dimensional tensor is conveniently represented as a set of
2n − 1 matrices:

C1,C2, . . . ,C2n−1.
It is easy to see, that

Equivalent formulation

Ck =

r∑
α=1

wkαRα,

Rα = uαu>α — symmetric rank-1 matrices

Equivalent formulation

Ck =

r∑
α=1

wkαRα,

Rα = uαu>α — symmetric rank-1 matrices

For given matrices C1, . . . ,C2n−1 find rank-1 matrices such that

Span(Ci) ∈ Span(Rs).

Equivalent formulation

Ck =

r∑
α=1

wkαRα,

Rα = uαu>α — symmetric rank-1 matrices

For given matrices C1, . . . ,C2n−1 find rank-1 matrices such that

Span(Ci) ∈ Span(Rs).

For polynomials Span(Ci) is a space of all Hankel matrices,
C = [ci+j]

For polynomials Span(Ci) is a space of all Hankel matrices,
C = [ci+j]

For complex or real number the answer is known and easy:
r = 2n − 1,

because there are 2n − 1 linearly independent matrices of rank 1:

(Hk)i+j = ρ
i+j
k ,

ρk — different nodes.

In GF(2) situation is diffent: Too few rank-1 matrices

Theorem
There are 3 matrices of rank 1, 5 matrices of 2, 9 matrices of 3,
. . . 2k + 1 matrices of k , such that they are linearly independent

alltogether.

Corollary: M(n) = O(n log n), but with a very big constant:
If α = logn M(n) then α = 1.01 when

n ∼ 10334,

i.e. estimate is purely theoretic.

Ck =

r∑
α=1

wkαRα,

Finite number of variants — exhaustive search!
For example: n = 3 there are only 23 − 1 = 7 different rank-1

matrices,
You have to select 6, only 7 diffent sets Rα

Ck =

r∑
α=1

wkαRα,

Finite number of variants — exhaustive search!
For example: n = 3 there are only 23 − 1 = 7 different rank-1

matrices,
You have to select 6, only 7 diffent sets Rα

For n = 4 — 5005 variants.

For n = 5 — 206 253 075 variants.

For small n — exhaustive search
For large — general theory of low-rank Hankel matrices.

For small n — exhaustive search
For large — general theory of low-rank Hankel matrices.

Hankel matrix H = [hi+j] has rank r , when its generating vector h
satisfies a short recurrence relationship of order k :

hi+r =

r−1∑
s=0

αshi+s .

Polynomial
∑r−1

s=0 αsx s is called generating — it plays a key role.
In the end, everything is reduced to the right selection of

polynomials.

Another intepretation
We select some set of polynomials p1, . . . , ps , and compute

a(x)b(x) mod pi ,

then reconstruct everything back using Chinese remainder theorem.

You can loose one or two multiplications:
For n = 5 optimal CRT method gives 14 multiplications (not 13)

For n = 6 — 18 multiplications (not 17),

These numbers can be obtained by our exhaustive search method.

Right selection of polynomials set — difficult problem.
It is solved by integer programming (long, but one time).

Right selection of polynomials set — difficult problem.
It is solved by integer programming (long, but one time).

n Mold Mnew

2 3 3
3 6 6
4 9 9
5 13 13
6 17 17
7 22 22
8 26 26
9 31 30
16 64 62
34 243 159
128 2187 749
1000 ∼ 50000 ∼ 3000

After the construction of U, V matrices nothing is finished.

What about additions?
For n = 128 matrix V has size 128× 749 and contains
approximately 50000 nonzeros, i.e. 50000 additions are needed.

After the construction of U, V matrices nothing is finished.

What about additions?
For n = 128 matrix V has size 128× 749 and contains
approximately 50000 nonzeros, i.e. 50000 additions are needed.

Fast multiplication by a given bit-matrix:
As an input — matrix, on the output — program to multiply on it.

Result
Instead of 50000 additions around 5000 additions, but tens of
thousand auxilaury variables.

Then we reduce the number of auxilaury variables with the help of
Program graph decomposition:

Instead of tens of thousands — 500 auxilaury variables.

Fast multiplication by a given bit-matrix:
As an input — matrix, on the output — program to multiply on it.

Result
Instead of 50000 additions around 5000 additions, but tens of
thousand auxilaury variables.

Then we reduce the number of auxilaury variables with the help of
Program graph decomposition:

Instead of tens of thousands — 500 auxilaury variables.

These are analogues of two known “compiler” techniques:

Common expression elimination

Register allocation via graph coloring

Both of them for these problem are inefficient

Everything consists from parts:

Summary
Optimal algorithms for small polynomials

Selecting of polynomial set for large n

Optimizing multiplication by U and V («Fourier without
Fourier»)

Program graph decomposition

As a result — 10 times faster for n = 128.
Not only in theory, but in practice.

I.V. Oseledets, Optimal Karatsuba-like formulae for certain
bilinear forms in GF(2), Linear Algebra Appl. 2008

I.V. Oseledets, Improved n-term Karatsuba-like formulae, IEEE
Trans. Comp., submitted (2008)

I.V. Oseledets, Optimal Karatsuba-like formulae for certain
bilinear forms in GF(2), Linear Algebra Appl. 2008

I.V. Oseledets, Improved n-term Karatsuba-like formulae, IEEE
Trans. Comp., submitted (2008)

Papers can be obtained from the author or from
http://spring.inm.ras.ru/osel
Thank you! Questions?

