Separable Nonlinear Least Squares Problems in Image Processing

Julianne Chung and James Nagy
Emory University
Atlanta, GA, USA

Collaborators: Eldad Haber (Emory)
Per Christian Hansen (Tech. Univ. of Denmark)
Dianne O’Leary (University of Maryland)
Inverse Problems in Imaging

Imaging problems are often modeled as:

\[b = Ax + e \]

where

- **A** - large, ill-conditioned matrix
- **b** - known, measured (image) data
- **e** - noise, statistical properties may be known

Goal: Compute approximation of image **x**
A more realistic image formation model is:

\[b = A(y)x + e \]

where

- \(A(y) \) - large, ill-conditioned matrix
- \(b \) - known, measured (image) data
- \(e \) - noise, statistical properties may be known
- \(y \) - parameters defining \(A \), usually approximated

Goal: Compute approximation of image \(x \) and improve estimate of parameters \(y \)
Application: Image Deblurring

- \(b = A(y) x + e \) = observed image
 where \(y \) describes blurring function

- Given: \(b \) and an estimate of \(y \)

- Standard Image Deblurring:
 Compute approximation of \(x \)

- Better approach:
 Jointly improve estimate of \(y \)
 and compute approximation of \(x \).
Application: Image Deblurring

- \(\mathbf{b} = \mathbf{A}(\mathbf{y}) \mathbf{x} + \mathbf{e} = \) observed image where \(\mathbf{y} \) describes blurring function
- Given: \(\mathbf{b} \) and an estimate of \(\mathbf{y} \)
 - Standard Image Deblurring: Compute approximation of \(\mathbf{x} \)
 - Better approach: Jointly improve estimate of \(\mathbf{y} \) and compute approximation of \(\mathbf{x} \).
The Linear Problem: \(b = Ax + e \)
The Nonlinear Problem: \(b = A(y)x + e \)

Example: Image Deblurring

Concluding Remarks

Application: Image Deblurring

- \(b = A(y)x + e = \) observed image where \(y \) describes blurring function
- Given: \(b \) and an estimate of \(y \)
- Standard Image Deblurring:
 Compute approximation of \(x \)
- Better approach:
 Jointly improve estimate of \(y \)
 and compute approximation of \(x \).

Reconstruction using initial PSF

Julianne Chung and James Nagy
Emory University
Atlanta, GA

Separable Nonlinear Least Squares Problems in Image Processing
Application: Image Deblurring

- \(b = A(y)x + e \) = observed image where \(y \) describes blurring function
- Given: \(b \) and an estimate of \(y \)
- Standard Image Deblurring:
 Compute approximation of \(x \)
- Better approach:
 Jointly improve estimate of \(y \) and compute approximation of \(x \).
Application: Image Data Fusion

- $b_j = A(y_j)x + e_j$
 (collected low resolution images)
Application: Image Data Fusion

- \(b_j = A(y_j)x + e_j \)
 (collected low resolution images)
Application: Image Data Fusion

- $\mathbf{b}_j = \mathbf{A}(\mathbf{y}_j) \mathbf{x} + \mathbf{e}_j$
 (collected low resolution images)
Application: Image Data Fusion

\[b_j = A(y_j) x + e_j \]
(collected low resolution images)
Application: Image Data Fusion

- \(b_j = A(y_j) x + e_j \)
 (collected low resolution images)
Application: Image Data Fusion

- \(b_j = A(y_j)x + e_j \) (collected low resolution images)
- \[
\begin{bmatrix}
 b_1 \\
 \vdots \\
 b_m \\
\end{bmatrix} = \begin{bmatrix}
 A(y_1) \\
 \vdots \\
 A(y_m) \\
\end{bmatrix} x + \begin{bmatrix}
 e_1 \\
 \vdots \\
 e_m \\
\end{bmatrix}
\]
- \(b = A(y)x + e \)
- \(y = \) registration, blurring, etc., parameters
- Goal: Improve parameters \(y \) and compute \(x \)
Application: Image Data Fusion

- \(b_j = A(y_j)x + e_j \) (collected low resolution images)

\[
\begin{bmatrix}
 b_1 \\
 \vdots \\
 b_m
\end{bmatrix} =
\begin{bmatrix}
 A(y_1) \\
 \vdots \\
 A(y_m)
\end{bmatrix} x +
\begin{bmatrix}
 e_1 \\
 \vdots \\
 e_m
\end{bmatrix}
\]

\[
b = A(y)x + e
\]

- \(y = \) registration, blurring, etc., parameters
- Goal: Improve parameters \(y \) and compute \(x \)
Outline

1. The Linear Problem: $b = Ax + e$
2. The Nonlinear Problem: $b = A(y)x + e$
3. Example: Image Deblurring
4. Concluding Remarks
The Linear Problem

Assume $A = A(y)$ is known exactly.

- We are given A and b, where

 $$b = Ax + e$$

- A is an ill-conditioned matrix, and we do not know e.
- We want to compute an approximation of x.

Bad idea:

- e is small, so ignore it, and
- use $x_{\text{inv}} \approx A^{-1}b$
The Linear Problem

Assume $A = A(y)$ is known exactly.

- We are given A and b, where

$$b = Ax + e$$

- A is an ill-conditioned matrix, and we do not know e.
- We want to compute an approximation of x.

- Bad idea:
 - e is small, so ignore it, and
 - use $x_{\text{inv}} \approx A^{-1}b$
Example: Inverse Heat Equation

Regularization Tools test problem: heat.m
P. C. Hansen, www2.imm.dtu.dk/~pch/Regutools
Example: Inverse Heat Equation

If A and b are known exactly, can get an accurate reconstruction.

Inverse solution $x = A^{-1}b$

Noise free data, A^*x
Example: Inverse Heat Equation

But, if b contains a small amount of noise,
Example: Inverse Heat Equation

But, if b contains a small amount of noise, then we get a poor reconstruction!
SVD Analysis

An important linear algebra tool: Singular Value Decomposition

Let \(\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^T \) where

- \(\Sigma \) = diag\((\sigma_1, \sigma_2, \ldots, \sigma_n)\), \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0 \)
- \(\mathbf{U}^T \mathbf{U} = \mathbf{I} \), \(\mathbf{V}^T \mathbf{V} = \mathbf{I} \)
- \(\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix} \) (left singular vectors)
- \(\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \) (right singular vectors)
The naïve inverse solution can then be represented as:

\[x = A^{-1}b \]

\[= V\Sigma^{-1}U^Tb \]

\[= \sum_{i=1}^{n} \frac{u_i^Tb}{\sigma_i}v_i \]
The naïve inverse solution can then be represented as:

\[\hat{x} = A^{-1}(b + e) \]

\[= V \Sigma^{-1} U^T (b + e) \]

\[= \sum_{i=1}^{n} \frac{u_i^T (b + e)}{\sigma_i} v_i \]
The naïve inverse solution can then be represented as:

\[
\hat{x} = A^{-1}(b + e) \\
= V\Sigma^{-1}U^T(b + e) \\
= \sum_{i=1}^{n} \frac{u_i^T(b + e)}{\sigma_i}v_i \\
= \sum_{i=1}^{n} \frac{u_i^Tb}{\sigma_i}v_i + \sum_{i=1}^{n} \frac{u_i^Te}{\sigma_i}v_i \\
= x + \text{error}
\]
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.

Singular values
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i. Large $\sigma_i \leftrightarrow$ smooth (low frequency) v_i.

- **Singular values**
 - 10^{-6} to 10^6
 - Graph shows decreasing trend from left to right.

- **Singular vector, v_1**
 - Range from -0.2 to 0.2
 - Graph shows smooth curve from left to right.

Julianne Chung and James Nagy
Emory University
Atlanta, GA

Separable Nonlinear Least Squares Problems in Image Processing
The Linear Problem: \(b = Ax + e \)

The Nonlinear Problem: \(b = A(y)x + e \)

Example: Image Deblurring

Example: Inverse Heat Equation

Error term depends on singular values \(\sigma_i \) and singular vectors \(v_i \).

Large \(\sigma_i \) ↔ smooth (low frequency) \(v_i \)
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.

Large $\sigma_i \leftrightarrow$ smooth (low frequency) v_i.
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.
Large $\sigma_i \leftrightarrow$ smooth (low frequency) v_i
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.

Large $\sigma_i \leftrightarrow$ smooth (low frequency) v_i
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i. Small $\sigma_i \leftrightarrow$ oscillating (high frequency) v_i.
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.

Small $\sigma_i \leftrightarrow$ oscillating (high frequency) v_i

![Graph showing singular values and singular vector](image-url)
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.
Small $\sigma_i \leftrightarrow$ oscillating (high frequency) v_i
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.
Small $\sigma_i \leftrightarrow$ oscillating (high frequency) v_i
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i. Small $\sigma_i \leftrightarrow$ oscillating (high frequency) v_i.

![Singular values](image1.png)
![Singular vector, v_{125}](image2.png)
Example: Inverse Heat Equation

Error term depends on singular values σ_i and singular vectors v_i.
Small $\sigma_i \leftrightarrow$ oscillating (high frequency) v_i.
The naïve inverse solution can then be represented as:

\[\hat{x} = A^{-1}(b + e) \]

\[= V\Sigma^{-1}U^T(b + e) \]

\[= \sum_{i=1}^{n} \frac{u_i^T(b + e)}{\sigma_i} v_i \]

\[= \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i + \sum_{i=1}^{n} \frac{u_i^T e}{\sigma_i} v_i \]

\[= x + \text{error} \]
Regularization by Filtering

Basic Idea: Filter out effects of small singular values.
(Hansen, SIAM, 1997)

\[x_{\text{reg}} = A_{\text{reg}}^{-1}b = V \Phi \Sigma^{-1} U^T b = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i , \]

where \(\Phi = \text{diag}(\phi_1, \phi_2, \ldots, \phi_n) \)

The "filter factors" satisfy

\[\phi_i \approx \begin{cases} 1 & \text{if } \sigma_i \text{ is large} \\ 0 & \text{if } \sigma_i \text{ is small} \end{cases} \]
The Linear Problem: $b = Ax + e$

The Nonlinear Problem: $b = A(y)x + e$

Example: Image Deblurring

Concluding Remarks

An Example: Tikhonov Regularization

$$\min_x \left\{ \|b - Ax\|_2^2 + \lambda^2 \|x\|_2^2 \right\} \iff \min_x \left\| \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} A \\ \lambda I \end{bmatrix} x \right\|_2^2$$
The Linear Problem: \(b = Ax + e \)

The Nonlinear Problem: \(b = A(y)x + e \)

Example: Image Deblurring

Concluding Remarks

An Example: Tikhonov Regularization

\[
\min_x \left\{ \| b - Ax \|^2_2 + \lambda^2 \| x \|^2_2 \right\} \quad \Leftrightarrow \quad \min_x \left\| \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} A \\ \lambda I \end{bmatrix} x \right\|^2_2
\]

An equivalent SVD filtering formulation:

\[
x_{tik} = \sum_{i=1}^n \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2} \frac{u_i^T b}{\sigma_i} v_i
\]
The Linear Problem: \(b = Ax + e \)

The Nonlinear Problem: \(b = A(y) x + e \)

Example: Image Deblurring

Concluding Remarks

An Example: Tikhonov Regularization

\[
\min_x \left\{ \| b - Ax \|^2_2 + \lambda^2 \| x \|^2_2 \right\} \quad \Leftrightarrow \quad \min_x \left\| \begin{bmatrix} b \\ 0 \end{bmatrix} - \begin{bmatrix} A \\ \lambda I \end{bmatrix} x \right\|^2_2
\]

An equivalent SVD filtering formulation:

\[
x_{\text{tik}} = \sum_{i=1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2} \frac{u_i^T b}{\sigma_i} v_i
\]

Julianne Chung and James Nagy Emory University Atlanta, GA Separable Nonlinear Least Squares Problems in Image Processing
Choosing Regularization Parameters

Lots of choices: Generalized Cross Validation (GCV), L-curve, discrepancy principle, ...
Choosing Regularization Parameters

Lots of choices: Generalized Cross Validation (GCV), L-curve, discrepancy principle, ...

GCV and Tikhonov: Choose λ to minimize

$$GCV(\lambda) = \frac{n \sum_{i=1}^{n} \left(\frac{u_i^T b}{\sigma_i^2 + \lambda^2} \right)^2}{\left(\sum_{i=1}^{n} \frac{1}{\sigma_i^2 + \lambda^2} \right)^2}$$
Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x_{inv}. Quality of reconstruction depends on λ. But λ depends on A and b.

Desired solution, x

Inverse solution $x = A^{-1}b$
Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x_{inv}. Quality of reconstruction depends on λ. But λ depends on A and b.

![Regularized Solution, $\lambda = 0.0005$](image1.png)

![Inverse solution $x = A^{-1}b$](image2.png)
Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x_{inv}.

Quality of reconstruction depends on λ.

But λ depends on A and b.

Regularized Solution, $\lambda = 0.05$

Inverse solution $x = A^{-1}b$
Example: Inverse Heat Equation

Reconstruction using Tikhonov reg. can be better than x_{inv}. Quality of reconstruction depends on λ. But λ depends on A and b.

Regularized Solution, $\lambda = 0.005$

Inverse solution $x = A^{-1}b$
Some remarks:

- For large matrices, computing SVD is expensive.

- SVD algorithms do not readily simplify for structured or sparse matrices.

- Alternative for large scale problems: LSQR iteration (Paige and Saunders, ACM TOMS, 1982)
Lanczos Bidiagonalization (LBD)

Given A and b, for $k = 1, 2, ..., $, compute

- $W_k = \begin{bmatrix} w_1 & w_2 & \cdots & w_k & w_{k+1} \end{bmatrix}$, $w_1 = b/\|b\|$
- $Z_k = \begin{bmatrix} z_1 & z_2 & \cdots & z_k \end{bmatrix}$

- $B_k = \begin{bmatrix} \alpha_1 & \beta_2 & \alpha_2 & & \\ & \beta_2 & \alpha_2 & \cdots & \beta_k \\ & & \ddots & \cdots & \alpha_k \\ & & & \beta_k & \alpha_k \\ & & & & \beta_{k+1} \end{bmatrix}$

where W_k and Z_k have orthonormal columns, and

$A^T W_k = Z_k B_k^T + \alpha_{k+1} z_{k+1} e_{k+1}^T$

$A Z_k = W_k B_k$
LBD and LSQR

At kth LBD iteration, use QR to solve projected LS problem:

$$\min_{x \in R(Z_k)} \| b - Ax \|_2^2 = \min_f \| W_k^T b - B_k f \|_2^2 = \min_f \| \beta e_1 - B_k f \|_2^2$$

where $x_k = Z_k f$
At kth LBD iteration, use QR to solve projected LS problem:

$$
\min_{x \in R(Z_k)} \| b - Ax \|_2^2 = \min_f \| W_k^T b - B_k f \|_2^2 = \min_f \| \beta e_1 - B_k f \|_2^2
$$

where $x_k = Z_k f$

For our ill-posed inverse problems:

- Singular values of B_k converge to k largest sing. values of A.
- Thus, x_k is in a subspace that approximates a subspace spanned by the large singular components of A.
 - For $k < n$, x_k is a regularized solution.
 - $x_n = x_{\text{inv}} = A^{-1} b$ (bad approximation)
Example: Inverse Heat Equation

Singular values of B_k converge to large singular values of A. Thus, for early iterations k:

$$f = B_k \backslash W_k b$$

$$x_k = Z_k f$$

is a regularized reconstruction.
Example: Inverse Heat Equation

Singular values of B_k converge to large singular values of A. Thus, for early iterations k: \[
\begin{align*}
f &= B_k \backslash W_k b \\
x_k &= Z_k f
\end{align*}
\]
is a regularized reconstruction.
Example: Inverse Heat Equation

Singular values of B_k converge to large singular values of A. Thus, for later iterations k:

$$f = B_k \backslash W_k b$$

$$x_k = Z_k f$$

is a noisy reconstruction.
Example: Inverse Heat Equation

Singular values of B_k converge to large singular values of A. Thus, for later iterations k:

$$ f = B_k \backslash W_k b $$

$$ x_k = Z_k f $$

is a noisy reconstruction.
Lanczos Based Hybrid Methods

To avoid noisy reconstructions, embed regularization in LBD:

- O’Leary and Simmons, SISSC, 1981.
- Björck, Grimme, and Van Dooren, BIT, 1994.
- Chung, N, O’Leary, ETNA 2007 (HyBR Implementation)
Regularize the Projected Least Squares Problem

To stabilize convergence, regularize the projected problem:

$$\min_{f} \left\| \begin{bmatrix} \beta e_1 \\ 0 \end{bmatrix} - \begin{bmatrix} B_k \\ \lambda I \end{bmatrix} f \right\|_2^2$$

Note: B_k is very small compared to A, so

- Can use “expensive” methods to choose λ (e.g., GCV)
- Very little regularization is needed in early iterations.
- GCV tends to choose too large λ for bidiagonal system.
 Our remedy: Use a weighted GCV (Chung, N, O’Leary, 2007)
- Can also use WGCV information to estimate stopping iteration
 (approach similar to Björck, Grimme, and Van Dooren, BIT, 1994).
Example: Inverse Heat Equation

LSQR (no regularization)

\[
\begin{align*}
\mathbf{f} &= \mathbf{B}_k \backslash \mathbf{W}_k \mathbf{b} \\
\mathbf{x}_k &= \mathbf{Z}_k \mathbf{f}
\end{align*}
\]

HyBR (Tikhonov regularization)

\[
\begin{align*}
\mathbf{f} &= \left[\begin{array}{c} \mathbf{B}_k \\ \lambda_k \mathbf{l} \end{array} \right] \backslash \left[\begin{array}{c} \mathbf{W}_k \mathbf{b} \\ \mathbf{0} \end{array} \right] \\
\mathbf{x}_k &= \mathbf{Z}_k \mathbf{f}
\end{align*}
\]

$\lambda = 0.0115$
Example: Inverse Heat Equation

\[f = B_k \backslash W_k b \]
\[x_k = Z_k f \]

LSQR (no regularization)

HyBR (Tikhonov regularization)

\[f = \begin{bmatrix} B_k \\ \lambda_k I \end{bmatrix} \backslash \begin{bmatrix} W_k b \\ 0 \end{bmatrix} \]
\[x_k = Z_k f \]

\[\lambda = 0.0074 \]

iteration = 15
Example: Inverse Heat Equation

LSQR (no regularization)

\[f = B_k \backslash W_k b \]
\[x_k = Z_k f \]

HyBR (Tikhonov regularization)

\[f = \begin{bmatrix} B_k \\ \lambda_k I \end{bmatrix} \backslash \begin{bmatrix} W_k b \\ 0 \end{bmatrix} \]
\[x_k = Z_k f \]

\[\lambda = 0.0050 \]
Example: Inverse Heat Equation

LSQR (no regularization)

\[f = B_k \backslash W_k b \]
\[x_k = Z_k f \]

HyBR (Tikhonov regularization)

\[f = \begin{bmatrix} B_k \\ \lambda_k I \end{bmatrix} \backslash \begin{bmatrix} W_k b \\ 0 \end{bmatrix} \]
\[x_k = Z_k f \]

\[\lambda = 0.0042 \]

iteration = 35
The Nonlinear Problem

- We want to find \(x\) and \(y\) so that

\[
b = A(y)x + e
\]

- With Tikhonov regularization, solve

\[
\min_{x,y} \left\| \begin{bmatrix} A(y) \\ \lambda I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2_2
\]

- As with linear problem, choosing a good regularization parameter \(\lambda\) is important.
- Problem is linear in \(x\), nonlinear in \(y\).
- \(y \in \mathcal{R}^p, \ x \in \mathcal{R}^n\), with \(p \ll n\).
Variable Projection Method:

- Implicitly eliminate linear term.
- Optimize over nonlinear term.

Some general references:

- Golub and Pereyra, SINUM 1973 (also IP 2003)
- Kaufman, BIT 1975
- Osborne, SINUM 1975 (also ETNA 2007)
- Ruhe and Wedin, SIREV, 1980

How to apply to inverse problems?
Variable Projection Method

Instead of optimizing over both x and y:

$$\min_{x,y} \phi(x, y) = \min_{x,y} \left\| \begin{bmatrix} A(y) \\ \lambda I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$$

Let $x(y)$ be solution of

$$\min_x \phi(x, y) = \min_x \left\| \begin{bmatrix} A(y) \\ \lambda I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2^2$$

and then minimize the reduced cost functional:

$$\min_y \psi(y), \quad \psi(y) = \phi(x(y), y)$$
The Linear Problem: \(b = Ax + e \)

The Nonlinear Problem: \(b = A(y) x + e \)

Example: Image Deblurring

Concluding Remarks

Gauss-Newton Algorithm

Choose initial \(y_0 \)

For \(k = 0, 1, 2, \ldots \)

\[
\begin{align*}
 x_k &= \arg \min_x \left\| \begin{bmatrix} A(y_k) & \lambda_k I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_2 \\
 r_k &= b - A(y_k) x_k \\
 d_k &= \arg \min_d \| J_{\psi} d - r_k \|_2 \\
 y_{k+1} &= y_k + d_k
\end{align*}
\]

End
Gauss-Newton Algorithm with HyBR

And we use HyBR to solve the linear subproblem:

choose initial y_0
for $k = 0, 1, 2, \ldots$

$$x_k = \text{HyBR}(A(y_k), b)$$

$$r_k = b - A(y_k) x_k$$

$$d_k = \arg \min_d \| J_\psi d - r_k \|_2$$

$$y_{k+1} = y_k + d_k$$
end
Example: Image Deblurring

Matrix $A(y)$ is defined by a PSF, which is in turn defined by parameters. Specifically:

$$A(y) = A(P(y))$$

where

- A is 65536×65536, with entries given by P.
- P is 256×256, with entries:

$$p_{ij} = \exp \left(\frac{(i - k)^2 s_2^2 - (j - l)^2 s_1^2 + 2(i - k)(j - l)\rho^2}{2s_1^2 s_2^2 - 2\rho^4} \right)$$

- (k, l) is the PSF center (location of point source)
- y vector of unknown parameters:

$$y = \begin{bmatrix} s_1 \\ s_2 \\ \rho \end{bmatrix}$$
Can get analytical formula for Jacobian:

\[
J_\psi = \frac{\partial}{\partial y} \left\{ A(P(y)) x \right\} = \frac{\partial}{\partial P} \left\{ A(P(y)) x \right\} \cdot \frac{\partial}{\partial y} \left\{ P(y) \right\} = A(X) \cdot \frac{\partial}{\partial y} \left\{ P(y) \right\}
\]

where \(x = \text{vec}(X) \).

Though in this example, finite difference approximation of \(J_\psi \) works very well.
Example: Image Deblurring

Gauss-Newton Iteration History

<table>
<thead>
<tr>
<th>G-N Iteration</th>
<th>Δy</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.5716</td>
<td>0.1685</td>
</tr>
<tr>
<td>1</td>
<td>0.3345</td>
<td>0.1223</td>
</tr>
<tr>
<td>2</td>
<td>0.2192</td>
<td>0.0985</td>
</tr>
<tr>
<td>3</td>
<td>0.1473</td>
<td>0.0804</td>
</tr>
<tr>
<td>4</td>
<td>0.1006</td>
<td>0.0715</td>
</tr>
<tr>
<td>5</td>
<td>0.0648</td>
<td>0.0676</td>
</tr>
<tr>
<td>6</td>
<td>0.0355</td>
<td>0.0657</td>
</tr>
<tr>
<td>7</td>
<td>0.0144</td>
<td>0.0650</td>
</tr>
</tbody>
</table>
Example: Image Deblurring

Observed Image

Reconstruction using initial PSF

Reconstruction after 8 GN iterations
Imaging applications require solving challenging inverse problems.

Separable nonlinear least squares models exploit high level structure.

Hybrid methods are efficient solvers for large scale linear inverse problems.
 - Automatic estimation of regularization parameter.
 - Automatic estimation of stopping iteration.

Hybrid methods can be effective linear solvers for nonlinear problems.
Questions?

- Other methods to choose regularization parameters?
- Other regularization methods (e.g., total variation)?
- Sparse (in some basis) reconstructions?
- MATLAB Codes and Data?

 www.mathcs.emory.edu/~nagy/WGCV
 www.mathcs.emory.edu/~nagy/RestoreTools
 www2.imm.dtu.dk/~pch/HNO
 www2.imm.dtu.dk/~pch/Regutools