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An example to begin with

Consider the complex skew-symmetric matrix

A =


0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

 ,

which has one single eigenvalue λ0 = 0 and Jordan form

J3(0)⊕J1(0).

If A is subject to a small perturbation

A(ε) = A+ εE , ε << 1,

with E an arbitrary 4×4 complex matrix, then A(ε) has generically three
eigenvalues of order O(ε1/3), and one of order O(ε).

However, if E is restricted to be complex skew-symmetric, then A(ε) has
generically four eigenvalues of order O(ε1/2).
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An example to begin with

Consider the complex skew-symmetric matrix

A =


0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

 ,

which has one single eigenvalue λ0 = 0 and Jordan form

J3(0)⊕J1(0).

If A is subject to a small perturbation

A(ε) = A+ εE , ε << 1,

with E an arbitrary 4×4 complex matrix, then A(ε) has generically three
eigenvalues of order O(ε1/3), and one of order O(ε).

However, if E is restricted to be complex skew-symmetric, then A(ε) has
generically four eigenvalues of order O(ε1/2).

Sensitivity under structured perturbation qualitatively different than under
unstructured perturbation

D. Kressner, M.J. Peláez & J. Moro Structured condition numbers for multiple eigenvalues, Cortona ’08



Outline

1) Hölder condition numbers (structured & unstructured) for multiple
eigenvalues

2) Comparing structured and unstructured condition numbers for

2.1) generic structured perturbations

2.2) nongeneric structured perturbations

3) Concluding remarks
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Condition numbers for simple eigenvalues

Let λ0 be a simple eigenvalue of A ∈ Cn×n, ‖ · ‖ matrix 2-norm.

Definition

The condition number of λ0 is

κ(λ0) = lim
ε→0

sup
{
|∆λ |

ε
: E ∈ Cn×n ,‖E‖ ≤ 1 , λ0 +∆λ ∈ sp(A+ εE)

}

If x (resp. y ) right (resp. left) e-vector corresp. to λ0 with yHx = 1, then

κ(λ0) = ‖x‖‖y‖
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Condition numbers for simple eigenvalues

Let λ0 be a simple eigenvalue of A ∈ Cn×n, ‖ · ‖ matrix 2-norm.

Definition

The condition number of λ0 is

κ(λ0) = lim
ε→0

sup
{
|∆λ |

ε
: E ∈ Cn×n ,‖E‖ ≤ 1 , λ0 +∆λ ∈ sp(A+ εE)

}

If x (resp. y ) right (resp. left) e-vector corresp. to λ0 with yHx = 1, then

κ(λ0) = ‖x‖‖y‖

But: if λ0 is defective, then generically
∆λ

ε
→ ∞ as ε → 0 =⇒ Need 6= definition for κ(λ0)
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Structured perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric,
Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

look for numerical algorithms that preserve the structure and spectral
properties of the problem

may lead to significantly faster and/or more accurate solutions,
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Hence, if A ∈ S, class of structured matrices, =⇒ measure sensitivity with
respect to perturbations E ∈ S.

Leads to structured condition numbers.

κ(λ0,S) = lim
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sup
{
|∆λ |

ε
: E ∈ S, ‖E‖ ≤ 1 , λ0 +∆λ ∈ sp(A+ εE)

}
.
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Structured perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric,
Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

look for numerical algorithms that preserve the structure and spectral
properties of the problem

may lead to significantly faster and/or more accurate solutions,

Hence, if A ∈ S, class of structured matrices, =⇒ measure sensitivity with
respect to perturbations E ∈ S.

Leads to structured condition numbers.

κ(λ0,S) = lim
ε→0

sup
{
|∆λ |

ε
: E ∈ S, ‖E‖ ≤ 1 , λ0 +∆λ ∈ sp(A+ εE)

}
.

Question:

Is κ(λ0,S) much smaller than κ(λ0) ?
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Structured spectral condition numbers

Many relevant contributions on structured condition numbers of simple
eigenvalues

[Tisseur ’03]

[Byers & Kressner ’03]

[ Noschese & Pasquini ’06, ’07]

[Karow, Kressner & Tisseur ’06]

[Tisseur & Graillat ’06]

[Bora ’06]
...

as well as for structured pseudospectra

[Rump ’06]

[Karow ’06]
...
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Structured spectral condition numbers

Many relevant contributions on structured condition numbers of simple
eigenvalues

[Tisseur ’03]

[Byers & Kressner ’03]

[ Noschese & Pasquini ’06, ’07]

[Karow, Kressner & Tisseur ’06]

[Tisseur & Graillat ’06]

[Bora ’06]
...

as well as for structured pseudospectra

[Rump ’06]

[Karow ’06]
...

How about condition numbers for multiple, defective eigenvalues?
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First order perturbation theory

Let λ0 be a multiple e-value of A ∈ Cn×n, and
let n1 ≡ size of largest Jordan block corresp. to λ0.
Then, the worst-case behaviour of λ0 under small perturbations A+ εE
corresponds to

λ̂ (ε) = λ0 +(ξk )1/n1 ε
1/n1 +o(ε

1/n1),

where ξk are the eigenvalues of a product Y HEX
[Lidskii ’66]

Let

P−1AP =

[
J0 0
0 ∗

]
be a Jordan form of A, where J0 gathers all r1 Jordan blocks of size n1
corresp. to λ0. Then

Y H E X ∈ Cr1×r1 , where

X contains those columns of P which are right e-vectors of A corresp. to
blocks of largest size n1 in J0.
Y H contains those rows of P−1 which are left e-vectors of A corresp. to
blocks of largest size n1 in J0.
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Hölder condition numbers for multiple eigenvalues

Lidskii’s theory shows that worst-case behavior is

|∆λ |= |λ (ε)−λ0| ≤ |ξk |1/n1 ε
1/n1 + . . .
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Hölder condition numbers for multiple eigenvalues

Lidskii’s theory shows that worst-case behavior is

|∆λ |= |λ (ε)−λ0| ≤ |ξk |1/n1 ε
1/n1 + . . . ≤ ρ(Y HEX )1/n1 ε

1/n1 + . . .

Definition [M., Burke & Overton ’97]

λ0 multiple e-value of A ∈ Cn×n,

n1 ≡ largest size of Jordan blocks Jλ0
in Jordan form of A

Y ≡ left e-vectors taken from all n1×n1 Jordan blocks Jλ0
.

X ≡ right e-vectors taken from all n1×n1 Jordan blocks Jλ0
.

The Hölder condition number of λ0 is the pair κ(λ0) = (n1,α), where

α = sup
E∈Cn×n
||E ||≤1

ρ(Y HEX ), ρ(·)≡ spectral radius

D. Kressner, M.J. Peláez & J. Moro Structured condition numbers for multiple eigenvalues, Cortona ’08



Hölder condition numbers for multiple eigenvalues

Lidskii’s theory shows that worst-case behavior is

|∆λ |= |λ (ε)−λ0| ≤ |ξk |1/n1 ε
1/n1 + . . . ≤ ρ(Y HEX )1/n1 ε

1/n1 + . . .

Definition [M., Burke & Overton ’97]

λ0 multiple e-value of A ∈ Cn×n,

n1 ≡ largest size of Jordan blocks Jλ0
in Jordan form of A

Y ≡ left e-vectors taken from all n1×n1 Jordan blocks Jλ0
.

X ≡ right e-vectors taken from all n1×n1 Jordan blocks Jλ0
.

The Hölder condition number of λ0 is the pair κ(λ0) = (n1,α), where

α = sup
E∈Cn×n
||E ||≤1

ρ(Y HEX ), ρ(·)≡ spectral radius

One can prove that for any unitarily invariant matrix norm,

α = ‖XY H‖2
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Structured Hölder condition numbers for multiple eigenvalues

Again, if λ0 ∈ sp(A) for A ∈ S, class of structured matrices, define structured
Hölder condition number as a pair

κ(λ0,S) = (nS,αS),

where

nS ≡ reciprocal of smallest possible leading exponent in asymptotic
expansions of λ̂ (ε)−λ0 among all E ∈ S.

αS ≡ maximal value for leading coefficient of asymptotic expansions
among all E ∈ S giving rise to O(ε1/nS) expansions.
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Structured Hölder condition numbers for multiple eigenvalues

Again, if λ0 ∈ sp(A) for A ∈ S, class of structured matrices, define structured
Hölder condition number as a pair

κ(λ0,S) = (nS,αS),

where

nS ≡ reciprocal of smallest possible leading exponent in asymptotic
expansions of λ̂ (ε)−λ0 among all E ∈ S.

αS ≡ maximal value for leading coefficient of asymptotic expansions
among all E ∈ S giving rise to O(ε1/nS) expansions.

Our goal: Determine and compare the structured and unstructured
condition numbers of defective e-values for particular classes S of matrices,
e.g.,

complex symmetric, skew-symmetric, persymmetric, skew-Hermitian,
Toeplitz, symmetric Toeplitz, Hankel, zero-structured, Hamiltonian,

skew-Hamiltonian, symplectic,...
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Structured Hölder condition numbers for multiple eigenvalues

Again, if λ0 ∈ sp(A) for A ∈ S, class of structured matrices, define structured
Hölder condition number as a pair

κ(λ0,S) = (nS,αS),

where

nS ≡ reciprocal of smallest possible leading exponent in asymptotic
expansions of λ̂ (ε)−λ0 among all E ∈ S.

αS ≡ maximal value for leading coefficient of asymptotic expansions
among all E ∈ S giving rise to O(ε1/nS) expansions.

Important:

nS may be strictly smaller than n1,

e.g. as in the initial 4×4 complex skew-symmetric example,

where n1 = 3, nS = 2, and

S≡ skew-symmetric matrices
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Generic structures

κ(λ0) = (n1,α), κ(λ0,S) = (nS,αS).

First, consider the generic situation when

nS = n1,

i.e., there is some E ∈ S giving rise to a perturbation expansion of order
O(ε1/n1).
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Generic structures

κ(λ0) = (n1,α), κ(λ0,S) = (nS,αS).

First, consider the generic situation when

nS = n1,

i.e., there is some E ∈ S giving rise to a perturbation expansion of order
O(ε1/n1). In that case,

α = sup
E∈Cn×n
‖E‖2≤1

ρ(Y HEX ) = ‖XY H‖2, αS = sup
E∈S

‖E‖2≤1

ρ(Y HEX )

and we want to know whether αS << α or not.
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Generic structures

κ(λ0) = (n1,α), κ(λ0,S) = (nS,αS).

First, consider the generic situation when

nS = n1,

i.e., there is some E ∈ S giving rise to a perturbation expansion of order
O(ε1/n1). In that case,

α = sup
E∈Cn×n
‖E‖2≤1

ρ(Y HEX ) = ‖XY H‖2, αS = sup
E∈S

‖E‖2≤1

ρ(Y HEX )

and we want to know whether αS << α or not.

Usually, look first for some ES ∈ S such that

ρ(Y H ES X )≈ ‖XY H‖.

Then,
κ(λ0,S)≈ κ(λ0).
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Generic structures (II)

Structured Jordan form for A ∈ S.
(see [Thompson’91], [Mehl’06], ...)

⇓ ⇓ ⇓

Induced structure in XY H .
⇓ ⇓ ⇓

Mapping theorems: E0u = βv with |β |= 1, ‖E0‖2 ≈ 1, E0 ∈ S.

(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

⇓ ⇓ ⇓

κ(λ0) ≈ κ(λ0,S)
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Generic structures (II)

Structured Jordan form for A ∈ S.
(see [Thompson’91], [Mehl’06], ...)

⇓ ⇓ ⇓

Induced structure in XY H .
⇓ ⇓ ⇓

Mapping theorems: E0u = βv with |β |= 1, ‖E0‖2 ≈ 1, E0 ∈ S.
(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

⇓ ⇓ ⇓

κ(λ0) ≈ κ(λ0,S)

Take, for instance, S≡ complex symm. matrices. Then

Y = X , i.e., α = ‖XY H‖2 = ‖XXT ‖2.

Let XXT = UΣUT be a Takagi factorization (i.e., an SVD), and let u1 = Ue1

Set E0 = u1uH
1 ∈ S. Then,

ρ(E0XXT ) = ρ(u1uH
1 XXT ) = ρ(uH

1 XXT u1) = σmax(XXT ) = ‖XXT ‖2 = α

�
Mapping: E0u1 = u1uH

1 u1 = u1.
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Generic structures (III)

Structured Jordan form for A ∈ S.
(see [Thompson’91], [Mehl’06], ...)

⇓ ⇓ ⇓

Induced structure in XY H .
⇓ ⇓ ⇓

Mapping theorems: E0u = βv with |β |= 1, ‖E0‖2 ≈ 1, E0 ∈ S.

(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

⇓ ⇓ ⇓

κ(λ0) ≈ κ(λ0,S)

Works well for complex Toeplitz, Hankel, persymmetric, Hermitian,
symmetric, real Hamiltonian, skew-Hamiltonian,...

Does not work for complex skew-symmetric −→ can still be done using
’ad hoc’ techniques
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Generic structures (III)

Structured Jordan form for A ∈ S.
(see [Thompson’91], [Mehl’06], ...)

⇓ ⇓ ⇓

Induced structure in XY H .
⇓ ⇓ ⇓

Mapping theorems: E0u = βv with |β |= 1, ‖E0‖2 ≈ 1, E0 ∈ S.

(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

⇓ ⇓ ⇓

κ(λ0) ≈ κ(λ0,S)

Works well for complex Toeplitz, Hankel, persymmetric, Hermitian,
symmetric, real Hamiltonian, skew-Hamiltonian,...

Does not work for complex skew-symmetric −→ can still be done using
’ad hoc’ techniques

For more details (including matrix pencils & matrix polynomials) see

D. Kressner, M. J. Peláez, and J. Moro. Structured Hölder condition
numbers for multiple eigenvalues, preprint, 2006.
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Generic structures (III)

Structured Jordan form for A ∈ S.
(see [Thompson’91], [Mehl’06], ...)

⇓ ⇓ ⇓

Induced structure in XY H .
⇓ ⇓ ⇓

Mapping theorems: E0u = βv with |β |= 1, ‖E0‖2 ≈ 1, E0 ∈ S.
(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

⇓ ⇓ ⇓

κ(λ0) ≈ κ(λ0,S)

Works well for complex Toeplitz, Hankel, persymmetric, Hermitian,
symmetric, real Hamiltonian, skew-Hamiltonian,...
Does not work for complex skew-symmetric −→ can still be done using

’ad hoc’ techniques

What about nongeneric perturbations,
like skew-symmetric ones in the initial example?
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Nongeneric and fully nongeneric structures

Def: Given λ0 e-value of A, and Y , X matrices of left and right e-vectors as
before, a class S of structured matrices is nongeneric if nS < n1 or,
equivalently, if

sup
E∈S

‖E‖2≤1

ρ(Y HEX ) = 0
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Nongeneric and fully nongeneric structures

Def: Given λ0 e-value of A, and Y , X matrices of left and right e-vectors as
before, a class S of structured matrices is nongeneric if nS < n1 or,
equivalently, if

sup
E∈S

‖E‖2≤1

ρ(Y HEX ) = 0

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors,
since there is one single largest Jordan block of size 3.

Moreover, y = x since A is complex skew-symmetric, so

Y HEX = yHEx = xT Ex = 0 for any skew-symmetric E ∈ S.
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Nongeneric and fully nongeneric structures

Def: Given λ0 e-value of A, and Y , X matrices of left and right e-vectors as
before, a class S of structured matrices is nongeneric if nS < n1 or,
equivalently, if

sup
E∈S

‖E‖2≤1

ρ(Y HEX ) = 0

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors,
since there is one single largest Jordan block of size 3.

Moreover, y = x since A is complex skew-symmetric, so

Y HEX = yHEx = xT Ex = 0 for any skew-symmetric E ∈ S.

Definition

Given λ0 e-value of A, and Y , X matrices of left and right e-vectors as before,
a class S of structured matrices is said to be fully nongeneric if

Y HEX = 0 for any E ∈ S.

D. Kressner, M.J. Peláez & J. Moro Structured condition numbers for multiple eigenvalues, Cortona ’08



Nongeneric and fully nongeneric structures

Def: Given λ0 e-value of A, and Y , X matrices of left and right e-vectors as
before, a class S of structured matrices is nongeneric if nS < n1 or,
equivalently, if

sup
E∈S

‖E‖2≤1

ρ(Y HEX ) = 0

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors,
since there is one single largest Jordan block of size 3.

Moreover, y = x since A is complex skew-symmetric, so

Y HEX = yHEx = xT Ex = 0 for any skew-symmetric E ∈ S.

Definition

Given λ0 e-value of A, and Y , X matrices of left and right e-vectors as before,
a class S of structured matrices is said to be fully nongeneric if

Y HEX = 0 for any E ∈ S.

Can we somehow characterize fully nongeneric structures?
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Skew-structures and full nongenericity

Let S be a linear structure, i.e. S is a linear subspace of Cn×n.

Def: Let S be a linear subspace of Cn×n. Then, the skew-structure
associated with S is defined as

Skew(S) = {B ∈ Cn×n : vec(B)Hvec(A) = 0 ∀A ∈ S},

where vec≡ stacking operator.

Theorem [Peláez & M. ’08]

Let λ0 be an e-value of A with e-vector matrices X and Y . Let yi , xj be,
respectively, the columns of Y and X , and let S be a linear structure. Then S
is fully nongeneric for λ0 if and only if

yH
i xj ∈ Skew(S) for every i , j

The Skew operator produces all the ‘customary´ skew-families:
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Some linear structures and their skew-structures

S Skew(S)
Symmetric Skewsymmetric

Pseudo Symmetric Pseudo Skewsymmetric
Persymmetric Perskewsymmetric
Hamiltonian Skew-Hamiltonian
Hermitian Skew-Hermitian

Pseudo-Hermitian Pseudo-Skew-Hermitian
Toeplitz zero d-sums
Hankel zero ad-sums

Circulant zero ed-sums
Cocirculant zero ead-sums
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S Skew(S)
Symmetric Skewsymmetric

Pseudo Symmetric Pseudo Skewsymmetric
Persymmetric Perskewsymmetric
Hamiltonian Skew-Hamiltonian
Hermitian Skew-Hermitian

Pseudo-Hermitian Pseudo-Skew-Hermitian
Toeplitz zero d-sums
Hankel zero ad-sums

Circulant zero ed-sums
Cocirculant zero ead-sums

D. Kressner, M.J. Peláez & J. Moro Structured condition numbers for multiple eigenvalues, Cortona ’08



Fully nongeneric structures: the leading exponents

For fully nongeneric structures,

κ(λ0) = (n1,α), κ(λ0,S) = (nS,αS) with nS < n1,

where

n1 is the size of the largest λ0-Jordan block

How can we find nS?
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where

n1 is the size of the largest λ0-Jordan block

How can we find nS?

Use the Newton diagram, a geometric construction which gives both the
leading exponents and the leading coefficients in the asymptotic expansions
of the roots of a polynomial in two variables.
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For fully nongeneric structures,

κ(λ0) = (n1,α), κ(λ0,S) = (nS,αS) with nS < n1,

where

n1 is the size of the largest λ0-Jordan block

How can we find nS?

Use the Newton diagram, a geometric construction which gives both the
leading exponents and the leading coefficients in the asymptotic expansions
of the roots of a polynomial in two variables.

In our case,
p(λ ,ε) = det(A+ εE −λ I),

the characteristic polynomial of A(ε) = A+ εE .

How does the Newton diagram work?
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How does the ND work?

Write the characteristic polynomial p(λ ,ε) = det(A+ εE −λ I) of the
perturbed matrix as a polynomial in λ with ε-dependent coefficients, e.g.,

p(λ ,ε) = λ
4 +(2ε− ε

2)λ
3 + ε

2
λ

2 +(ε− ε
3)λ + ε

2

Draw a cartesian grid and label the axes with λ ,ε

λ4 λ3 λλ2

ε2

ε

1
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How does the ND work?

Write the characteristic polynomial p(λ ,ε) = det(A+ εE −λ I) of the
perturbed matrix as a polynomial in λ with ε-dependent coefficients, e.g.,

p(λ ,ε) = λ
4 +(2ε− ε

2)λ
3 + ε

2
λ

2 +(ε− ε
3)λ + ε

2

Consider only the dominant terms

Step 1: plot a point for each dominant εpλ q terms

λ4 λ3 λλ2

ε2

ε

1
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How does the ND work?

Write the characteristic polynomial p(λ ,ε) = det(A+ εE −λ I) of the
perturbed matrix as a polynomial in λ with ε-dependent coefficients, e.g.,

p(λ ,ε) = λ
4 +(2ε− ε

2)λ
3 + ε

2
λ

2 +(ε− ε
3)λ + ε

2

Consider only the dominant terms

Step 2: draw the lower boundary of the convex hull: that’s the ND

λ4 λ3 λλ2

ε2

ε

1
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How does the ND work?

Write the characteristic polynomial p(λ ,ε) = det(A+ εE −λ I) of the
perturbed matrix as a polynomial in λ with ε-dependent coefficients, e.g.,

p(λ ,ε) = λ
4 +(2ε− ε

2)λ
3 + ε

2
λ

2 +(ε− ε
3)λ + ε

2

Consider only the dominant terms

Step 1: each slope is a leading power in the Puiseux ε-expansion

λ4 λ3 λλ2

ε2

ε

1

three e-vals of O(ε1/3), one e-val of O(ε)
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The 4×4 example: leading exponents via the ND

Unstructured perturbation 0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

+ ε E , E =

 e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
e41 e42 e43 e44

 ∈ C4×4

If P−1AP = J, then P−1(A+ εE)P = J + Ẽ , where J = J3(0)⊕J1(0) and

Ẽ = P−1EP =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
Φ ∗ ∗ ∗
∗ ∗ ∗ ∗

 , with Φ = yHEx ,
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The 4×4 example: leading exponents via the ND

Unstructured perturbation 0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

+ ε E , E =

 e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
e41 e42 e43 e44

 ∈ C4×4

If P−1AP = J, then P−1(A+ εE)P = J + Ẽ , where J = J3(0)⊕J1(0) and

Ẽ = P−1EP =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
Φ ∗ ∗ ∗
∗ ∗ ∗ ∗

 , with Φ = yHEx ,

Step 2: draw lower boundary of convex hull

λ4 λ3 λλ2

ε2

ε

1

Smallest slope 1/3 ⇒ n1 = 3
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The 4×4 example: leading exponents via the ND

Unstructured perturbation 0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

+ ε E , E =

 e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
e41 e42 e43 e44

 ∈ C4×4

If P−1AP = J, then P−1(A+ εE)P = J + Ẽ , where J = J3(0)⊕J1(0) and

Ẽ = P−1EP =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
Φ ∗ ∗ ∗
∗ ∗ ∗ ∗

 , with Φ = yHEx ,

The term in λε is present only if Φ = yHEx 6= 0

H
disappears if

λ4 λ3 λλ2

ε2

ε

1

y  Ex = 0

Smallest slope 1/3 ⇒ n1 = 3
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The 4×4 example: leading exponents via the ND

Structured perturbation 0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

+ ε E , E =

 0 e12 e13 e14
−e12 0 e23 e24
−e13 −e23 0 e34
−e14 −e24 −e34 0

 ∈ S

If P−1AP = J, then P−1(A+ εE)P = J + Ẽ , where J = J3(0)⊕J1(0) and

Ẽ = P−1EP =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗

 , since Φ = yHEx = 0.
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The 4×4 example: leading exponents via the ND

Structured perturbation 0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

+ ε E , E =
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−e12 0 e23 e24
−e13 −e23 0 e34
−e14 −e24 −e34 0

 ∈ S

If P−1AP = J, then P−1(A+ εE)P = J + Ẽ , where J = J3(0)⊕J1(0) and

Ẽ = P−1EP =

 ∗ ∗ ∗ ∗
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 , since Φ = yHEx = 0.

Step 1: plot the points
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The 4×4 example: leading exponents via the ND

Structured perturbation 0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

+ ε E , E =

 0 e12 e13 e14
−e12 0 e23 e24
−e13 −e23 0 e34
−e14 −e24 −e34 0

 ∈ S

If P−1AP = J, then P−1(A+ εE)P = J + Ẽ , where J = J3(0)⊕J1(0) and

Ẽ = P−1EP =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗

 , since Φ = yHEx = 0.

Step 2: draw lower boundary of convex hull
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ε
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The 4×4 example: leading exponents via the ND

Structured perturbation 0 1 0 1
−1 0 −i 0
0 i 0 i
−1 0 −i 0

+ ε E , E =

 0 e12 e13 e14
−e12 0 e23 e24
−e13 −e23 0 e34
−e14 −e24 −e34 0

 ∈ S

If P−1AP = J, then P−1(A+ εE)P = J + Ẽ , where J = J3(0)⊕J1(0) and

Ẽ = P−1EP =

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗

 , since Φ = yHEx = 0.

Step 2: draw lower boundary of convex hull

λ4 λ3 λλ2

ε2

ε

1

Only slope 1/2 ⇒ n1 = 2
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

n1 r1 n2 r2

r2

r1

unstructured

HY  EX = 0
disappears if

Bending point disappears from ND
as soon as perturbations become
fully nongeneric, i.e., when

Y HEX = 0 for all E ∈ S.
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

n1 r1 n2 r2

r2

r1

structured For perturbations in S, identify
most likely points to lie on
lowest segment in the ND

Depend on sizes n1,n2 and
numbers r1, r2 of λ0-Jordan
blocks. Possibly, also on the
structure S
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

n1 r1 n2 r2

r2

r1

structured Finally, determine the reciprocal

nS < n1

of the lowest possible slope
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

n1 r1 n2 r2

r2

r1

structured Finally, determine the reciprocal

nS < n1

of the lowest possible slope

In this way, explicit formulas can be found for nS, depending on the quantities
n1,n2, r1, r2

Entry-wise information on the structure is important, to assess which
points are present on the grid when the perturbations are structured.

Otherwise, the formulas give just upper bounds on nS
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Concluding remarks

Structured and unstructured condition numbers for multiple eigenvalues
can be defined and compared for several classes of structured matrices.

So far, not many significant differences between structured and
unstructured condition number for generic structures except for a small
number of special cases

Main tools: structured canonical forms + mapping theorems

First component nS of structured condition number can be obtained for
fully nongeneric structures

Main tool: Newton diagram.

Still several relevant classes to be explored (e.g., zero structures).
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