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An example to begin with

Consider the complex skew-symmetric matrix

0O 1 0 1

-1 0 —-i 0
A= o i 0 i}’

-1 0 —-i O

which has one single eigenvalue Ao = 0 and Jordan form

J3(0) ® J1(0).
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An example to begin with

Consider the complex skew-symmetric matrix

0O 1 0 1

-1 0 —-i 0
A= o i 0 i}’

-1 0 —-i O

which has one single eigenvalue Ao = 0 and Jordan form
J3(0) ® J1(0).
@ If Ais subject to a small perturbation
A(e)=A+¢E, £<< 1,

with E an arbitrary 4 x 4 complex matrix, then A(e) has generically three
eigenvalues of order O(¢'/3), and one of order O(e).
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An example to begin with

Consider the complex skew-symmetric matrix

0O 1 0 1

-1 0 —-i 0
A= o i 0 i}’

-1 0 —-i O

which has one single eigenvalue Ao = 0 and Jordan form
J3(0) ® J1(0).
@ If Ais subject to a small perturbation
A(e)=A+¢E, £<< 1,

with E an arbitrary 4 x 4 complex matrix, then A(e) has generically three
eigenvalues of order O(¢'/3), and one of order O(e).

@ However, if E is restricted to be complex skew-symmetric, then A(e) has
generically four eigenvalues of order O(c'/2).
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An example to begin with

Consider the complex skew-symmetric matrix

0o 1 0 1
-1 0 -/ 0
A=l o i o |
-1 0 —i 0
which has one single eigenvalue 15 = 0 and Jordan form
J3(0) @ J1(0).

@ If Ais subject to a small perturbation
A(e)=A+¢E, £<< 1,

with E an arbitrary 4 x 4 complex matrix, then A(e) has generically three
eigenvalues of order O(¢'/3), and one of order O(e).

@ However, if E is restricted to be complex skew-symmetric, then A(e) has
generically four eigenvalues of order O(¢'/2).

Sensitivity under structured perturbation qualitatively different than under
unstructured perturbation
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1) Hélder condition numbers (structured & unstructured) for multiple
eigenvalues

2) Comparing structured and unstructured condition numbers for
2.1) generic structured perturbations

2.2) nongeneric structured perturbations

3) Concluding remarks
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Condition numbers for eigenvalues

@ Let Ay be a simple eigenvalue of A€ C™", | -|| matrix 2-norm.

The condition number of A is

K(lo):inLnosup{%M tEeC™ M| E| <1, 40+ A4 esp(A—s—eE)}
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Condition numbers for eigenvalues

@ Let Ay be a simple eigenvalue of A€ C™", | -|| matrix 2-norm.

The condition number of A is

K(lo):sliLnosup{%M tEeC™ M| E| <1, 40+ A4 esp(A—s—eE)}

@ If x (resp. y) right (resp. left) e-vector corresp. to Ay with y*x =1, then

x(Z0) = [Ix[[ ¥l
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Condition numbers for eigenvalues

@ Let Ag be a simple eigenvalue of A€ C™", || -|| matrix 2-norm.

The condition number of A is

K(?LO):SIiTOsup{lATM :EecC™M|E <1,20+A1 esp(A+8E)}

o If x (resp. y) right (resp. left) e-vector corresp. to Ay with y/x =1, then

x(Z0) = IIx[ ¥l

But: if Ag is defective, then generically
A

- T° as e 0 = Need # definition for x(4g)
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perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric,
Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

@ look for numerical algorithms that preserve the structure and spectral
properties of the problem

@ may lead to significantly faster and/or more accurate solutions,
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perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric,
Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

@ look for numerical algorithms that preserve the structure and spectral
properties of the problem

@ may lead to significantly faster and/or more accurate solutions,

Hence, if A< S, class of structured matrices, — measure sensitivity with
respect to perturbations E €.

Leads to structured condition numbers.

K(%g,S) :sli%sup{mg—“ cE€S,||E <1, 0+ A% € sp(A+sE)}.
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perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric,
Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

@ look for numerical algorithms that preserve the structure and spectral
properties of the problem

@ may lead to significantly faster and/or more accurate solutions,

Hence, if A €S, class of structured matrices, = measure sensitivity with
respect to perturbations E € S.

Leads to structured condition numbers.

K(0,S) :msup{ BA Ees Bl <1, 2+ A0 e sp(A—i—sE)}.

e :

Is k(Ag,S) much smaller than x(4q) ?
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Structured spectral condition numbers

Many relevant contributions on structured condition numbers of simple
eigenvalues

[Tisseur '03]

[Byers & Kressner 03]

[ Noschese & Pasquini 06, '07]
[Karow, Kressner & Tisseur '06]
[Tisseur & Graillat '06]

[Bora ’06]

as well as for structured pseudospectra

[Rump ’06]
[Karow '06]
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Structured spectral condition numbers

Many relevant contributions on structured condition numbers of simple
eigenvalues

[Tisseur '03]

[Byers & Kressner 03]

[ Noschese & Pasquini 06, '07]
[Karow, Kressner & Tisseur '06]
[Tisseur & Graillat '06]

[Bora '06]

as well as for structured pseudospectra
[Rump ’06]
[Karow '06]

How about condition numbers for multiple, defective eigenvalues?
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First order perturbation theory

@ Let Ay be a multiple e-value of Ac C™", and
let ny = size of largest Jordan block corresp. to Ag.
Then, the worst-case behaviour of 4y under small perturbations A+ ¢E
corresponds to

() = Ao+ (&) V/mel/m 4 o(el/m),

where &, are the eigenvalues of a product YXEX
[Lidskii ’66]
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First order perturbation theory

@ Let A9 be a multiple e-value of A€ C"™", and
let ny = size of largest Jordan block corresp. to Ag.

Then, the worst-case behaviour of 4y under small perturbations A+ ¢E
corresponds to

A(e) =20+ (&) MeVM 4 o(eM),
where &, are the eigenvalues of a product YXEX
[Lidskii ’66]
o Let
P1aP= { 00 ]

*

be a Jordan form of A, where J; gathers all r; Jordan blocks of size ny
corresp. to Ag. Then

YHEX e Ccnin, where

@ X contains those columns of P which are right e-vectors of A corresp. to
blocks of largest size nq in Jj.

@ Y contains those rows of P~! which are left e-vectors of A corresp. to
blocks of largest size nq in Jj. '
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Hélder condition numbers for multiple eigenvalues

Lidskii’s theory shows that worst-case behavior is

|AA" :|A(£)72'0| < ‘§k|1/n1g1/”1 T
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Hélder condition numbers for multiple eigenvalues

Lidskii’s theory shows that worst-case behavior is

IAA] = [A(e) = Ao| < |Ek|"V/Mel/ M . < p(YTEX)/mel/m 4
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Hélder condition numbers for multiple eigenvalues

Lidskii’s theory shows that worst-case behavior is

|AA| = |A(e) — Ao| < &V Mel/ ™M .. < p(YHEX)YMmel/m 4

Ao multiple e-value of A e C™",

ny = largest size of Jordan blocks Jj, in Jordan form of A
Y = left e-vectors taken from all ny x ny Jordan blocks Jj, .
X = right e-vectors taken from all ny x ny Jordan blocks Jj, .

The Hélder condition number of A is the pair | k(4g) = (n1, @), where

a= sup p(YHEX),  p(-)= spectral radius
EeCnxn
IE]<1
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Hélder condition numbers for multiple eigenvalues

Lidskii’s theory shows that worst-case behavior is

IAA] = [A(e) = Ao| < |Ek|"V/Mel/ M . < p(YTEX)/mel/m 4

Ao multiple e-value of Ae C™",

ny = largest size of Jordan blocks Jj, in Jordan form of A
Y = left e-vectors taken from all ny x ny Jordan blocks Jj, .
X = right e-vectors taken from all ny x ny Jordan blocks Jj, .

The Hélder condition number of A is the pair | k(4g) = (n1, @), where

a= sup p(Y"EX),
EeCnxn
lIEl<t

p(-) = spectral radius

One can prove that for any unitarily invariant matrix norm,

a= XY
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Structured Hélder condition numbers for multiple eigenvalues

Again, if Ay € sp(A) for A c S, class of structured matrices, define structured
Holder condition number as a pair

k(A0,S) = (ns, o),

where
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Structured Hélder condition numbers for multiple eigenvalues

Again, if Ay € sp(A) for A c S, class of structured matrices, define structured
Holder condition number as a pair

k(A0,S) = (ns, o),

where
@ ns = reciprocal of smallest possible leading exponent in asymptotic
expansions of A(e)—Ag among all E €.
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Structured Hélder condition numbers for multiple eigenvalues

Again, if Ay € sp(A) for A c S, class of structured matrices, define structured
Holder condition number as a pair

k(A0,S) = (ns, o),

where
@ ns = reciprocal of smallest possible leading exponent in asymptotic
expansions of A(e)—Ag among all E €.

@ g = maximal value for leading coefficient of asymptotic expansions
among all £ € S giving rise to O(e'/™) expansions.
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Structured Hélder condition numbers for multiple eigenvalues

Again, if Ay € sp(A) for A c S, class of structured matrices, define structured
Holder condition number as a pair

k(4o,5) = (ns, o),
where
@ ns = reciprocal of smallest possible leading exponent in asymptotic
expansions of A(e)—Ag among all E €.

@ o = maximal value for leading coefficient of asymptotic expansions
among all E € S giving rise to O(e'/™) expansions.

Our goal: Determine and compare the structured and unstructured
condition numbers of defective e-values for particular classes S of matrices,

e.g.,

complex symmetric, skew-symmetric, persymmetric, skew-Hermitian,
Toeplitz, symmetric Toeplitz, Hankel, zero-structured, Hamiltonian,
skew-Hamiltonian, symplectic,...
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Structured Hélder condition numbers for multiple eigenvalues

Again, if Ay € sp(A) for Ac S, class of structured matrices, define structured
Hélder condition number as a pair

k(29,8) = (ns, &),

where

@ ns = reciprocal of smallest possible leading exponent in asymptotic
expansions of A(g)—Ap among all E € S.

@ g = maximal value for leading coefficient of asymptotic expansions
among all £ € S giving rise to O(&'/™) expansions.

ng may be strictly smaller than ny,

e.g. as in the initial 4 x 4 complex skew-symmetric example,
where ny =3, ng =2, and

S = skew-symmetric matrices
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Generic structures

k(Z0) = (m,@),  x(40,S) = (s, a5).

First, consider the generic situation when

Nns =nq,

i.e., there is some E € S giving rise to a perturbation expansion of order
O(e'/m).

D. Kressner, M.J. Pelaez & J. Moro Structured condition numbers for multiple eigenvalues, Cortona '08



Generic structures

k(20) = (n,a),  K(%0,8) = (s, 05).

First, consider the generic situation when

Ns =nq,

i.e., there is some E € S giving rise to a perturbation expansion of order
O('/™). In that case,

a= sup p(YPEX)=|xY"s, as = sup p(Y7EX)
TElet 1Elpet

and we want to know whether [ag << e or not.
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Generic structures

K(%):(n17a)7 K(%vg):(n8>“§)'

First, consider the generic situation when

Ns =ny,

i.e., there is some E € S giving rise to a perturbation expansion of order
O('/™). In that case,

a= sup p(YHEX)=|XYH|5, 05 = Sup p(YMEX)
felpet Elpet

and we want to know whether [ag << o or not.
Usually, look first for some Eg € S such that
p(Y" Es X) ~ |1 XYH].

Then,
K(20,S) = k(4o).
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Generic structures (II)

\ Structured Jordan form for A€ S. \
(see [Thompson’91], [Mehl'06], ...)

4 4 4
‘ Induced structure in XY*H. ‘
4 4 4

Mapping theorems: Equ = Bv with |B|=1, |Ella~1, Ey€S.

(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

I I I
| k(o) =~ K(%.S) |
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Generic structures (II)

\ Structured Jordan form for A € S. \
(see [Thompson’91], [Mehl'06], ...)

4 4 4
‘ Induced structure in XY*H. ‘
I ¢ I

Mapping theorems: Equ = v with |B|=1, ||Eylla~1, EpES.
(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

A3 (3 A8
\ k(o) ~ K(k.5) |
Take, for instance, S = complex symm. matrices. Then

Y=X, ie., a=|XY"s=|XXT|,.

Let XXT = UL UT be a Takagi factorization (i.e., an SVD), and let uy = Ue;
Set Ey = Uy u1 € S. Then,

p(EoXXT) = p(Uruf! XXT) = p(uf! XXTT7) = omax(XXT) = [|XXT |2 =

-

Mapping: Equy = thul uy = T5.
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Generic structures (lll)

\ Structured Jordan form for A € S. \
(see [Thompson’91], [Mehl'06], ...)

I {3 s
‘ Induced structure in XY*H. ‘
I N[} s

Mapping theorems: Equ = v with |B|=1, ||Eyllo=1, Ep€S.

(see [Rump’03], [Mackey,Mackey&Tisseur'06], ...)

I 4 4
| k(o) ~ x(lo.5) |

Works well for complex Toeplitz, Hankel, persymmetric, Hermitian,
symmetric, real Hamiltonian, skew-Hamiltonian,...

Does not work for complex skew-symmetric —  can still be done using
"ad hoc’ techniques
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Generic structures (lll)

\ Structured Jordan form for A € S. \
(see [Thompson’91], [Mehl'06], ...)

i3 ) I
‘ Induced structure in XY". ‘
| (3 (8

Mapping theorems: Equ = v with |B|=1, ||Eglla=1, EpES.
(see [Rump’03], [Mackey,Mackey&Tisseur'06], ...)

I 4 4
| k(o) ~ x(lg,5) |

Works well for complex Toeplitz, Hankel, persymmetric, Hermitian,
symmetric, real Hamiltonian, skew-Hamiltonian,...

Does not work for complex skew-symmetric —  can still be done using
"ad hoc’ techniques
For more details (including matrix pencils & matrix polynomials) see

D. Kressner, M. J. Pelaez, and J. Moro. Structured Hélder condition i
numbers for multiple eigenvalues, preprint, 2006.
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Generic structures (lll)

\ Structured Jordan form for A€ S. \
(see [Thompson'91], [Mehl'06], ...)

4 4 4
‘ Induced structure in XY*H. ‘
4 4 4

Mapping theorems: Equ = Bv with |B|=1, |Ella~1, Ey€S.
(see [Rump’03], [Mackey,Mackey&Tisseur’06], ...)

4 \’ !
| k(o) ~ x(lg,S) |
Works well for complex Toeplitz, Hankel, persymmetric, Hermitian,
symmetric, real Hamiltonian, skew-Hamiltonian,...

Does not work for complex skew-symmetric —  can still be done using
"ad hoc’ techniques

What about nongeneric perturbations, 7
like skew-symmetric ones in the initial example?
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Nongeneric and fully nongeneric structures

Def: Given 4y e-value of A, and Y, X matrices of left and right e-vectors as
before, a class S of structured matrices is nongeneric if ns < nq or,
equivalently, if

sup p(YMEX)=0

o

|Ellg=1

D. Kressner, M.J. Pelaez & J. Moro Structured condition numbers for multiple eigenvalues, Cortona '08



Nongeneric and fully nongeneric structures

Def: Given Ay e-value of A, and Y, X matrices of left and right e-vectors as
before, a class S of structured matrices is nongeneric if ng < ny or,
equivalently, if

sup p(YHEX)=0

Elpet
For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors,
since there is one single largest Jordan block of size 3.

Moreover, y =X since A is complex skew-symmetric, so

YHEX = yHEx =xTEx=0 for any skew-symmetric E € S.
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Nongeneric and fully nongeneric structures

Def: Given Ay e-value of A, and Y, X matrices of left and right e-vectors as
before, a class S of structured matrices is nongeneric if ng < ny or,
equivalently, if

sup p(YHEX)=0

e

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors,
since there is one single largest Jordan block of size 3.

Moreover, y =X since A is complex skew-symmetric, so

YHEX = yHEx =xTEx=0 for any skew-symmetric E € S.

Given A e-value of A, and Y, X matrices of left and right e-vectors as before,
a class S of structured matrices is said to be fully nongeneric if

YHEX=0  forany EcS.
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Nongeneric and fully nongeneric structures

Def: Given Aj e-value of A, and Y, X matrices of left and right e-vectors as
before, a class S of structured matrices is hongeneric if ns < nq or,
equivalently, if

sup p(YMEX)=0

EeS

[|Ellg=1

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors,
since there is one single largest Jordan block of size 3.

Moreover, y =X since A is complex skew-symmetric, so

YHEX = yHEx =xTEx=0 for any skew-symmetric E € S.

Given A e-value of A, and Y, X matrices of left and right e-vectors as before,
a class S of structured matrices is said to be fully nongeneric if

YHEX=0  forany EcS.

Can we somehow characterize fully nongeneric structures?
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Skew-structures and full nongenericity

Let S be a linear structure, i.e. S is a linear subspace of C™".

Def: Let S be a linear subspace of C"™". Then, the skew-structure
associated with S is defined as

Skew(S) = {B e C™" : vec(B)"vec(A)=0 VAeS},

where vec= stacking operator.

Theorem [Pelaez & M. '08]

Let A9 be an e-value of A with e-vector matrices X and Y. Let y;, x; be,
respectively, the columns of Y and X, and let S be a linear structure. Then S
is fully nongeneric for Ay if and only if

y,-Hx,- € Skew(S) for every i,j

The Skew operator produces all the ‘customary” skew-families:
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Some linear structures and their skew-structures

S Skew(S)
Symmetric Skewsymmetric
Pseudo Symmetric | Pseudo Skewsymmetric
Persymmetric Perskewsymmetric
Hamiltonian Skew-Hamiltonian
Hermitian Skew-Hermitian
Pseudo-Hermitian | Pseudo-Skew-Hermitian
Toeplitz zero d-sums
Hankel zero ad-sums
Circulant zero ed-sums
Cocirculant zero ead-sums
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Some linear structures and their skew-structures

S Skew(S)
Symmetric Skewsymmetric
Pseudo Symmetric | Pseudo Skewsymmetric
Persymmetric Perskewsymmetric
Hamiltonian Skew-Hamiltonian
Hermitian Skew-Hermitian
Pseudo-Hermitian | Pseudo-Skew-Hermitian
Toeplitz zero d-sums
Hankel zero ad-sums
Circulant zero ed-sums
Cocirculant zero ead-sums
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Fully nongeneric structures: the leading exponents

For fully nongeneric structures,
k(ho) = (m.@),  x(A,5)=(ns,05)  with ns < ny,

where

@ ny is the size of the largest Ag-Jordan block
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Fully nongeneric structures: the leading exponents

For fully nongeneric structures,
k(do) = (m,a),  Kk(A,S)=(ns,as)  with ng < ny,
where
@ ny is the size of the largest Ag-Jordan block

@ How can we find ng?
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Fully nongeneric structures: the leading exponents

For fully nongeneric structures,
K(do) =(m,a),  k(9,S)=(ns,05)  with ng < ny,
where
@ ny is the size of the largest Ag-Jordan block

@ How can we find ng?

Use the Newton diagram, a geometric construction which gives both the
leading exponents and the leading coefficients in the asymptotic expansions
of the roots of a polynomial in two variables.
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Fully nongeneric structures: the leading exponents

For fully nongeneric structures,
K(Ao) = (M, @), K(Ag,S) = (ns, as) with ng < ny,
where
@ ny is the size of the largest Ag-Jordan block

@ How can we find ng?

Use the Newton diagram, a geometric construction which gives both the
leading exponents and the leading coefficients in the asymptotic expansions
of the roots of a polynomial in two variables.

In our case,
p(A,e) =det(A+eE —Al),

the characteristic polynomial of A(e) = A+ €E.
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Fully nongeneric structures: the leading exponents

For fully nongeneric structures,
k(Ao) = (n,a),  &(4,S) = (ns,05) with ng < ny,
where

@ ny is the size of the largest Ag-Jordan block

@ How can we find ng?

Use the Newton diagram, a geometric construction which gives both the
leading exponents and the leading coefficients in the asymptotic expansions
of the roots of a polynomial in two variables.

In our case,
p(A,e) =det(A+eE—Al),

the characteristic polynomial of A(e) = A+ ¢€E.

How does the Newton diagram work?

D. Kressner, M.J. Pelaez & J. Moro Structured condition numbers for multiple eigenvalues, Cortona '08



How does the ND work?

Write the characteristic polynomial p(A,e) = det(A+eE — Al) of the
perturbed matrix as a polynomial in A with e-dependent coefficients, e.g.,

p(A,e) =A%+ (2e —e2)A3 + £2A2 + (e — €3)A + €2

Draw a cartesian grid and label the axes with 4, ¢
e
]
14 13 12 | 1
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How does the ND work?

Write the characteristic polynomial p(A,¢) = det(A+€E — Al) of the
perturbed matrix as a polynomial in A with e-dependent coefficients, e.g.,

p(L,e) =A%+ (2e — e2)A3 + 222 4 (e —€3)A + €2
Consider only the dominant terms

Step 1: plot a point for each dominant ePA9 terms
&
@
14 13 12 | 1
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How does the ND work?

Write the characteristic polynomial p(A,e) = det(A+eE — Al) of the
perturbed matrix as a polynomial in A with e-dependent coefficients, e.g.,

p(A,e) =A%+ (26 —e2)A3 + €212 4+ (e — €3 + €2

Consider only the dominant terms

Step 2: draw the lower boundary of the convex hull: that's the ND
e
e
/
|4 13 12 | 1
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How does the ND work?

Write the characteristic polynomial p(A,¢) = det(A+€E — Al) of the
perturbed matrix as a polynomial in A with e-dependent coefficients, e.g.,

p(h,€) =A% + (26 — e2)A3 + 222 4+ (e —€3)A + €2
Consider only the dominant terms

Step 1: each slope is a leading power in the Puiseux e-expansion
&
(=
/
14 13 12 | 1

three e-vals of O(g'/3), one e-val of O(¢)
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The 4 x 4 example: leading exponents via the ND

Unstructured perturbation

o 1 0 1 €11 €12 €13 €1

-1 0 —i 0 _ | ex1 ex ex3 ex 44
0 i 0 i tek, E= e e e em | C

-1 0 —-i 0 €41 €42 €43 €44

If P~1AP =J, then P~1(A+€E)P=J+E, where J=J3(0)®J;(0) and

. with & =yHEx,
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The 4 x 4 example: leading exponents via the ND

Unstructured perturbation

o 1 0 1 €11 €12 €13 €1

-1 0 —-i O _ | €21 ex €3 ey 4x4
0 i 0 i +eE, E= e em € € | C c

-1 0 —-i 0 €41 €42 €43 €44

If P-1AP =J, then P~1(A+€E)P=J+E, where J=J3(0)®J;(0) and

with & = yHEx,

I

Step 1: plot the points
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The 4 x 4 example: leading exponents via the ND

Unstructured perturbation

o 1 0 1 €11 €12 €613 €1
-1 0 —-i O _ | e ex e ey 4x4
0 i 0 i +eE, E= e em e € | C c
-1 0 —i 0 €41 €42 €43 €44

If P-TAP =J, then P~1(A+€E)P =J+E, where J=J3(0)®J;(0) and

with & = yHEx,

I

Step 2: draw lower boundary of convex hull
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The 4 x 4 example: leading exponents via the ND

Unstructured perturbation

o 1 0 1 €11 €12 €13 €1
-1 0 —-i O _ | e ex e ey 4x4
o i o i |TEE E= e em e € | C c

-1 0 —i

o

€41 €42 €43 6E44

If P-1AP =J, then P~1(A+€E)P=J+E, where J=J3(0)®J;(0) and

. with & =y"Ex,

Step 2: draw lower boundary of convex hull
e?
/
14 13 12 1 1
Smallest slope 1/3 =n; =3
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The 4 x 4 example: leading exponents via the ND

Unstructured perturbation

o 1 0 1 €11 €2 €13 ey

-1 0 —-i O _ | €1 ex ex3 ey 4x4
0 i 0 i +eE, E= €31 €3 €33 €34 eC

-1 0 -/ 0 €41 €42 €43 €44

If P-1AP =J, then P~1(A+€E)P =J+E, where J=J3(0)®J;(0) and

. with & =y"Ex,

The term in A¢ is present only if ® = y"Ex +#0

P

/ disap;ears if

yHEx:0

Smallest slope 1/3 = ny =3
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The 4 x 4 example: leading exponents via the ND

Structured perturbation

0 1 0 1 0 €12 eq3 €14
-1 0 —-i 0 o —e12 0 €23 €24
0 i 0 i +8E’ E= —eq3 —6o3 0 €34 €S
—1 0 —-i O —€14 —€24 —€34 0

If P-1AP =J, then P~1(A+€E)P =J+E, where J=J3(0)®J;(0) and

. since ®=y"Ex=0.
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The 4 x 4 example: leading exponents via the ND

Structured perturbation

0 1 0 1 0 e12 eq3 €14
-1 0 —i 0 o —e12 0 €03 €24
0 i 0 i +8E’ E= —eq3 —6o3 0 €34 €S
—1 0 —-i 0 —€14 —€24 —€34 0

If P-1AP =J, then P~1(A+€E)P =J+E, where J=J3(0)&J;(0) and

. since ®=y"Ex=0.

Step 1: plot the points
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The 4 x 4 example: leading exponents via the ND

Structured perturbation

0 1 0 1 0 e12 eq3 €14
-1 0 —-i 0 o —€e12 0 €03 €24
0 i 0 i +8E’ E= —eq3 —6o3 0 €34 €S
-1 0 —-i O —€14 —E€n4 —€34 0

If P-1AP =J, then P~1(A+€E)P =J+E, where J=J3(0)®J;(0) and

, since ¢ =y"Ex=0.

*
*
*
*

Step 2: draw lower boundary of convex hull
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The 4 x 4 example: leading exponents via the ND

Structured perturbation

0 1 0 1 0 €12 €13 €14
-1 0 —-i 0 o —€12 0 €03 €24
0 i 0 i +£E7 E= —e13 —€23 0 €34 €S
-1 0 —-i 0 —€14 —€o4 —E€34 0

It P-TAP = J, then P~1(A+¢eE)P=J+E, where J=Js(0)&J;(0) and

—

, since & =y"Ex=0.

*
*
*
*

Step 2: draw lower boundary of convex hull

Only slope 1/2 =ny =2
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

unstructured
P
//\disappears if r
| 1
— HEX 20
Y nr;

Bending point disappears from ND
as soon as perturbations become
fully nongeneric, i.e., when

YHEX =0 forall EcS.
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

st

uctured

Q)

72N\
™

P1e]

@ For perturbations in S, identify
most likely points to lie on
lowest segment in the ND

@ Depend on sizes nq,n. and
numbers ry, r» of Ag-Jordan
blocks. Possibly, also on the
structure S
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

structured Finally, determine the reciprocal
sl Ng < M
Tl of the lowest possible slope
et \/[ n
LY nr
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Fully nongeneric structures and the Newton diagram

Same can be done in general for arbitrary fully nongeneric structure:

stryctured Finally, determine the reciprocal
= 2 Ns < Ny
T of the lowest possible slope
I
LY 1P

In this way, explicit formulas can be found for ng, depending on the quantities
Ny, N, N,

@ Entry-wise information on the structure is important, to assess which
points are present on the grid when the perturbations are structured.

@ Otherwise, the formulas give just upper bounds on ng
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Concluding remarks

@ Structured and unstructured condition numbers for multiple eigenvalues
can be defined and compared for several classes of structured matrices.
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Concluding remarks

@ Structured and unstructured condition numbers for multiple eigenvalues
can be defined and compared for several classes of structured matrices.

@ So far, not many significant differences between structured and
unstructured condition number for generic structures except for a small
number of special cases

Main tools: structured canonical forms + mapping theorems
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Concluding remarks

@ Structured and unstructured condition numbers for multiple eigenvalues
can be defined and compared for several classes of structured matrices.

@ So far, not many significant differences between structured and
unstructured condition number for generic structures except for a small
number of special cases

Main tools: structured canonical forms + mapping theorems

@ First component ng of structured condition number can be obtained for
fully nongeneric structures

Main tool: Newton diagram.
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Concluding remarks

@ Structured and unstructured condition numbers for multiple eigenvalues
can be defined and compared for several classes of structured matrices.

@ So far, not many significant differences between structured and
unstructured condition number for generic structures except for a small
number of special cases

Main tools: structured canonical forms + mapping theorems

@ First component ng of structured condition number can be obtained for
fully nongeneric structures

Main tool: Newton diagram.

@ Still several relevant classes to be explored (e.g., zero structures).
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