# Structured condition numbers for multiple eigenvalues 

Julio Moro<br>Departamento de Matemáticas<br>Universidad Carlos III de Madrid<br>(Spain)

Joint work with
Daniel Kressner \& María J. Peláez

Structured Numerical Linear Algebra Problems:
Cortona
Analysis, Algorithms and Applications
September 15-19, 2008

## An example to begin with

Consider the complex skew-symmetric matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & -i & 0 \\
0 & i & 0 & i \\
-1 & 0 & -i & 0
\end{array}\right]
$$

which has one single eigenvalue $\lambda_{0}=0$ and Jordan form

$$
J_{3}(0) \oplus J_{1}(0) .
$$

Consider the complex skew-symmetric matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & -i & 0 \\
0 & i & 0 & i \\
-1 & 0 & -i & 0
\end{array}\right]
$$

which has one single eigenvalue $\lambda_{0}=0$ and Jordan form

$$
J_{3}(0) \oplus J_{1}(0) .
$$

- If $A$ is subject to a small perturbation

$$
A(\varepsilon)=A+\varepsilon E, \quad \varepsilon \ll 1,
$$

with $E$ an arbitrary $4 \times 4$ complex matrix, then $A(\varepsilon)$ has generically three eigenvalues of order $O\left(\varepsilon^{1 / 3}\right)$, and one of order $O(\varepsilon)$.

Consider the complex skew-symmetric matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & -i & 0 \\
0 & i & 0 & i \\
-1 & 0 & -i & 0
\end{array}\right]
$$

which has one single eigenvalue $\lambda_{0}=0$ and Jordan form

$$
J_{3}(0) \oplus J_{1}(0)
$$

- If $A$ is subject to a small perturbation

$$
A(\varepsilon)=A+\varepsilon E, \quad \varepsilon \ll 1
$$

with $E$ an arbitrary $4 \times 4$ complex matrix, then $A(\varepsilon)$ has generically three eigenvalues of order $O\left(\varepsilon^{1 / 3}\right)$, and one of order $O(\varepsilon)$.

- However, if $E$ is restricted to be complex skew-symmetric, then $A(\varepsilon)$ has generically four eigenvalues of order $O\left(\varepsilon^{1 / 2}\right)$.


## An example to begin with

Consider the complex skew-symmetric matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
-1 & 0 & -i & 0 \\
0 & i & 0 & i \\
-1 & 0 & -i & 0
\end{array}\right]
$$

which has one single eigenvalue $\lambda_{0}=0$ and Jordan form

$$
J_{3}(0) \oplus J_{1}(0)
$$

- If $A$ is subject to a small perturbation

$$
A(\varepsilon)=A+\varepsilon E, \quad \varepsilon \ll 1
$$

with $E$ an arbitrary $4 \times 4$ complex matrix, then $A(\varepsilon)$ has generically three eigenvalues of order $O\left(\varepsilon^{1 / 3}\right)$, and one of order $O(\varepsilon)$.

- However, if $E$ is restricted to be complex skew-symmetric, then $A(\varepsilon)$ has generically four eigenvalues of order $O\left(\varepsilon^{1 / 2}\right)$.

Sensitivity under structured perturbation qualitatively different than under unstructured perturbation

1) Hölder condition numbers (structured \& unstructured) for multiple eigenvalues
2) Comparing structured and unstructured condition numbers for
2.1) generic structured perturbations
2.2) nongeneric structured perturbations
3) Concluding remarks

- Let $\lambda_{0}$ be a simple eigenvalue of $A \in \mathbb{C}^{n \times n},\|\cdot\|$ matrix 2-norm.


## Definition

The condition number of $\lambda_{0}$ is

$$
\kappa\left(\lambda_{0}\right)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{|\Delta \lambda|}{\varepsilon}: E \in \mathbb{C}^{n \times n},\|E\| \leq 1, \lambda_{0}+\Delta \lambda \in \operatorname{sp}(A+\varepsilon E)\right\}
$$

- Let $\lambda_{0}$ be a simple eigenvalue of $A \in \mathbb{C}^{n \times n},\|\cdot\|$ matrix 2-norm.


## Definition

The condition number of $\lambda_{0}$ is

$$
\kappa\left(\lambda_{0}\right)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{|\Delta \lambda|}{\varepsilon}: E \in \mathbb{C}^{n \times n},\|E\| \leq 1, \lambda_{0}+\Delta \lambda \in \operatorname{sp}(A+\varepsilon E)\right\}
$$

- If $x$ (resp. $y$ ) right (resp. left) e-vector corresp. to $\lambda_{0}$ with $y^{H} x=1$, then

$$
\kappa\left(\lambda_{0}\right)=\|x\|\|y\|
$$

- Let $\lambda_{0}$ be a simple eigenvalue of $A \in \mathbb{C}^{n \times n},\|\cdot\|$ matrix 2-norm.


## Definition

The condition number of $\lambda_{0}$ is

$$
\kappa\left(\lambda_{0}\right)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{|\Delta \lambda|}{\varepsilon}: E \in \mathbb{C}^{n \times n},\|E\| \leq 1, \lambda_{0}+\Delta \lambda \in \operatorname{sp}(A+\varepsilon E)\right\}
$$

- If $x$ (resp. $y$ ) right (resp. left) e-vector corresp. to $\lambda_{0}$ with $y^{H} x=1$, then

$$
\kappa\left(\lambda_{0}\right)=\|x\|\|y\|
$$

But: if $\lambda_{0}$ is defective, then generically

$$
\frac{\Delta \lambda}{\varepsilon} \rightarrow \infty \quad \text { as } \varepsilon \rightarrow 0 \Longrightarrow \text { Need } \neq \text { definition for } \kappa\left(\lambda_{0}\right)
$$

If the eigenproblem has some special structure (symmetric, skew-symmetric, Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

- look for numerical algorithms that preserve the structure and spectral properties of the problem
- may lead to significantly faster and/or more accurate solutions,


## perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric, Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

- look for numerical algorithms that preserve the structure and spectral properties of the problem
- may lead to significantly faster and/or more accurate solutions,

Hence, if $A \in \mathbb{S}$, class of structured matrices, $\Longrightarrow$ measure sensitivity with respect to perturbations $E \in \mathbb{S}$.

Leads to structured condition numbers.

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{|\Delta \lambda|}{\varepsilon}: E \in \mathbb{S},\|E\| \leq 1, \lambda_{0}+\Delta \lambda \in \operatorname{sp}(A+\varepsilon E)\right\}
$$

If the eigenproblem has some special structure (symmetric, skew-symmetric, Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

- look for numerical algorithms that preserve the structure and spectral properties of the problem
- may lead to significantly faster and/or more accurate solutions,

Hence, if $A \in \mathbb{S}$, class of structured matrices, $\Longrightarrow$ measure sensitivity with respect to perturbations $E \in \mathbb{S}$.

Leads to structured condition numbers.

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right)=\lim _{\varepsilon \rightarrow 0} \sup \left\{\frac{|\Delta \lambda|}{\varepsilon}: E \in \mathbb{S},\|E\| \leq 1, \lambda_{0}+\Delta \lambda \in \operatorname{sp}(A+\varepsilon E)\right\}
$$

## Question:

$$
\text { Is } \kappa\left(\lambda_{0}, \mathbb{S}\right) \text { much smaller than } \kappa\left(\lambda_{0}\right) ?
$$

Many relevant contributions on structured condition numbers of simple eigenvalues
[Tisseur '03]
[Byers \& Kressner '03]
[ Noschese \& Pasquini '06, '07] [Karow, Kressner \& Tisseur '06]
[Tisseur \& Graillat '06]
[Bora '06]
as well as for structured pseudospectra
[Rump '06]
[Karow '06]

Many relevant contributions on structured condition numbers of simple eigenvalues
[Tisseur '03]
[Byers \& Kressner '03]
[ Noschese \& Pasquini '06, '07] [Karow, Kressner \& Tisseur '06]
[Tisseur \& Graillat '06]
[Bora '06]
as well as for structured pseudospectra
[Rump '06]
[Karow '06]

How about condition numbers for multiple, defective eigenvalues?

- Let $\lambda_{0}$ be a multiple e-value of $A \in \mathbb{C}^{n \times n}$, and
let $n_{1} \equiv$ size of largest Jordan block corresp. to $\lambda_{0}$.
Then, the worst-case behaviour of $\lambda_{0}$ under small perturbations $A+\varepsilon E$ corresponds to

$$
\widehat{\lambda}(\varepsilon)=\lambda_{0}+\left(\xi_{k}\right)^{1 / n_{1}} \varepsilon^{1 / n_{1}}+o\left(\varepsilon^{1 / n_{1}}\right),
$$

where $\xi_{k}$ are the eigenvalues of a product $Y^{H} E X$
[Lidskii '66]

- Let $\lambda_{0}$ be a multiple e-value of $A \in \mathbb{C}^{n \times n}$, and
let $n_{1} \equiv$ size of largest Jordan block corresp. to $\lambda_{0}$.
Then, the worst-case behaviour of $\lambda_{0}$ under small perturbations $A+\varepsilon E$ corresponds to

$$
\widehat{\lambda}(\varepsilon)=\lambda_{0}+\left(\xi_{k}\right)^{1 / n_{1}} \varepsilon^{1 / n_{1}}+o\left(\varepsilon^{1 / n_{1}}\right)
$$

where $\xi_{k}$ are the eigenvalues of a product $Y^{H} E X$
[Lidskii '66]

- Let

$$
P^{-1} A P=\left[\begin{array}{cc}
J_{0} & 0 \\
0 & *
\end{array}\right]
$$

be a Jordan form of $A$, where $J_{0}$ gathers all $r_{1}$ Jordan blocks of size $n_{1}$ corresp. to $\lambda_{0}$. Then

$$
Y^{H} E X \in \mathbb{C}^{r_{1} \times r_{1}}, \quad \text { where }
$$

- $X$ contains those columns of $P$ which are right e-vectors of $A$ corresp. to blocks of largest size $n_{1}$ in $J_{0}$.
- $Y^{H}$ contains those rows of $P^{-1}$ which are left e-vectors of $A$ corresp. to blocks of largest size $n_{1}$ in $J_{0}$.

Lidskii's theory shows that worst-case behavior is

$$
|\Delta \lambda|=\left|\lambda(\varepsilon)-\lambda_{0}\right| \leq\left|\xi_{k}\right|^{1 / n_{1}} \varepsilon^{1 / n_{1}}+\ldots
$$

Lidskii's theory shows that worst-case behavior is

$$
|\Delta \lambda|=\left|\lambda(\varepsilon)-\lambda_{0}\right| \leq\left|\xi_{k}\right|^{1 / n_{1}} \varepsilon^{1 / n_{1}}+\ldots \leq \rho\left(Y^{H} E X\right)^{1 / n_{1}} \varepsilon^{1 / n_{1}}+\ldots
$$

Lidskii's theory shows that worst-case behavior is

$$
|\Delta \lambda|=\left|\lambda(\varepsilon)-\lambda_{0}\right| \leq\left|\xi_{k}\right|^{1 / n_{1}} \varepsilon^{1 / n_{1}}+\ldots \leq \rho\left(Y^{H} E X\right)^{1 / n_{1}} \varepsilon^{1 / n_{1}}+\ldots
$$

## Definition [M., Burke \& Overton '97]

$\lambda_{0}$ multiple e-value of $A \in \mathbb{C}^{n \times n}$,
$n_{1} \equiv$ largest size of Jordan blocks $J_{\lambda_{0}}$ in Jordan form of $A$
$Y \equiv$ left e-vectors taken from all $n_{1} \times n_{1}$ Jordan blocks $J_{\lambda_{0}}$.
$X \equiv$ right e-vectors taken from all $n_{1} \times n_{1}$ Jordan blocks $J_{\lambda_{0}}$.
The Hölder condition number of $\lambda_{0}$ is the pair $\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right)$, where

$$
\alpha=\sup _{\substack{E \in \cap \times n \\\|E\| \leq 1}} \rho\left(Y^{H} E X\right), \quad \rho(\cdot) \equiv \text { spectral radius }
$$

Lidskii's theory shows that worst-case behavior is

$$
|\Delta \lambda|=\left|\lambda(\varepsilon)-\lambda_{0}\right| \leq\left|\xi_{k}\right|^{1 / n_{1}} \varepsilon^{1 / n_{1}}+\ldots \leq \rho\left(Y^{H} E X\right)^{1 / n_{1}} \varepsilon^{1 / n_{1}}+\ldots
$$

## Definition [M., Burke \& Overton '97]

$\lambda_{0}$ multiple e-value of $A \in \mathbb{C}^{n \times n}$,
$n_{1} \equiv$ largest size of Jordan blocks $J_{\lambda_{0}}$ in Jordan form of $A$
$Y \equiv$ left e-vectors taken from all $n_{1} \times n_{1}$ Jordan blocks $J_{\lambda_{0}}$.
$X \equiv$ right e-vectors taken from all $n_{1} \times n_{1}$ Jordan blocks $J_{\lambda_{0}}$.
The Hölder condition number of $\lambda_{0}$ is the pair $\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right)$, where

$$
\alpha=\sup _{\substack{E \in C^{n \times n} \\\|E\| \leq 1}} \rho\left(Y^{H} E X\right), \quad \rho(\cdot) \equiv \text { spectral radius }
$$

One can prove that for any unitarily invariant matrix norm,

$$
\alpha=\left\|X Y^{H}\right\|_{2}
$$

Again, if $\lambda_{0} \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right),
$$

where

Again, if $\lambda_{0} \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right),
$$

where

- $n_{\mathbb{S}} \equiv$ reciprocal of smallest possible leading exponent in asymptotic expansions of $\hat{\lambda}(\varepsilon)-\lambda_{0}$ among all $E \in \mathbb{S}$.

Again, if $\lambda_{0} \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right),
$$

where

- $n_{\mathbb{S}} \equiv$ reciprocal of smallest possible leading exponent in asymptotic expansions of $\hat{\lambda}(\varepsilon)-\lambda_{0}$ among all $E \in \mathbb{S}$.
- $\alpha_{\mathbb{S}} \equiv$ maximal value for leading coefficient of asymptotic expansions among all $E \in \mathbb{S}$ giving rise to $O\left(\varepsilon^{1 / n_{s}}\right)$ expansions.

Again, if $\lambda_{0} \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right),
$$

where

- $n_{\mathbb{S}} \equiv$ reciprocal of smallest possible leading exponent in asymptotic expansions of $\widehat{\lambda}(\varepsilon)-\lambda_{0}$ among all $E \in \mathbb{S}$.
- $\alpha_{\mathbb{S}} \equiv$ maximal value for leading coefficient of asymptotic expansions among all $E \in \mathbb{S}$ giving rise to $O\left(\varepsilon^{1 / n_{s}}\right)$ expansions.

Our goal: Determine and compare the structured and unstructured condition numbers of defective e-values for particular classes $\mathbb{S}$ of matrices, e.g.,
complex symmetric, skew-symmetric, persymmetric, skew-Hermitian, Toeplitz, symmetric Toeplitz, Hankel, zero-structured, Hamiltonian, skew-Hamiltonian, symplectic,...

## Structured Hölder condition numbers for multiple eigenvalues

Again, if $\lambda_{0} \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right)
$$

where

- $n_{\mathbb{S}} \equiv$ reciprocal of smallest possible leading exponent in asymptotic expansions of $\hat{\lambda}(\varepsilon)-\lambda_{0}$ among all $E \in \mathbb{S}$.
- $\alpha_{\mathbb{S}} \equiv$ maximal value for leading coefficient of asymptotic expansions among all $E \in \mathbb{S}$ giving rise to $O\left(\varepsilon^{1 / n_{s}}\right)$ expansions.


## Important:

$n_{\mathbb{S}}$ may be strictly smaller than $n_{1}$,
e.g. as in the initial $4 \times 4$ complex skew-symmetric example,
where $n_{1}=3, n_{\mathbb{S}}=2$, and
$\mathbb{S} \equiv$ skew-symmetric matrices

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right)
$$

First, consider the generic situation when

$$
n_{\mathbb{S}}=n_{1}
$$

i.e., there is some $E \in \mathbb{S}$ giving rise to a perturbation expansion of order $O\left(\varepsilon^{1 / n_{1}}\right)$.

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right)
$$

First, consider the generic situation when

$$
n_{\mathbb{S}}=n_{1}
$$

i.e., there is some $E \in \mathbb{S}$ giving rise to a perturbation expansion of order $O\left(\varepsilon^{1 / n_{1}}\right)$. In that case,

$$
\alpha=\sup _{\substack{E \in \mathbb{C}^{n \times n} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)=\left\|X Y^{H}\right\|_{2}, \quad \alpha_{\mathbb{S}}=\sup _{\substack{E \in \mathbb{S} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)
$$

and we want to know whether $\alpha_{\mathbb{S}} \ll \alpha$ or not.

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right)
$$

First, consider the generic situation when

$$
n_{\mathbb{S}}=n_{1}
$$

i.e., there is some $E \in \mathbb{S}$ giving rise to a perturbation expansion of order $O\left(\varepsilon^{1 / n_{1}}\right)$. In that case,

$$
\alpha=\sup _{\substack{E \in \mathbb{C}^{n \times n} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)=\left\|X Y^{H}\right\|_{2}, \quad \alpha_{\mathbb{S}}=\sup _{\substack{E \in \mathbb{S} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)
$$

and we want to know whether $\alpha_{\mathbb{S}} \ll \alpha$ or not.
Usually, look first for some $E_{\mathbb{S}} \in \mathbb{S}$ such that

$$
\rho\left(Y^{H} E_{\mathbb{S}} X\right) \approx\left\|X Y^{H}\right\|
$$

Then,

$$
\kappa\left(\lambda_{0}, \mathbb{S}\right) \approx \kappa\left(\lambda_{0}\right)
$$



Mapping theorems: $E_{0} u=\beta v$ with $|\beta|=1,\left\|E_{0}\right\|_{2} \approx 1, E_{0} \in \mathbb{S}$.
(see [Rump'03], [Mackey,Mackey\&Tisseur'06], ...)

| $K\left(\lambda_{0}\right)$ | $K\left(\lambda_{0}, \mathbb{S}\right)$ |
| :---: | :---: |

Structured Jordan form for $A \in \mathbb{S}$.
(see [Thompson'91], [Mehl'06], ...) $\Downarrow \quad \Downarrow \quad \Downarrow$
Induced structure in $X Y^{H}$. $\Downarrow \quad \Downarrow \quad \Downarrow$
Mapping theorems: $E_{0} u=\beta v$ with $|\beta|=1,\left\|E_{0}\right\|_{2} \approx 1, E_{0} \in \mathbb{S}$.
(see [Rump'03], [Mackey,Mackey\&Tisseur'06], ...)
$\Downarrow \quad \Downarrow \quad \Downarrow$
$\kappa\left(\lambda_{0}\right) \approx \kappa\left(\lambda_{0}, \mathbb{S}\right)$
Take, for instance, $\mathbb{S} \equiv$ complex symm. matrices. Then

$$
Y=\bar{X}, \quad \text { i.e., } \quad \alpha=\left\|X Y^{H}\right\|_{2}=\left\|X X^{\top}\right\|_{2} .
$$

Let $X X^{\top}=U \Sigma U^{\top}$ be a Takagi factorization (i.e., an SVD), and let $u_{1}=U e_{1}$ Set $E_{0}=\overline{u_{1}} u_{1}^{H} \in \mathbb{S}$. Then,

$$
\rho\left(E_{0} X X^{T}\right)=\rho\left(\overline{u_{1}} u_{1}^{H} X X^{T}\right)=\rho\left(u_{1}^{H} X X^{T} \overline{u_{1}}\right)=\sigma_{\max }\left(X X^{T}\right)=\left\|X X^{T}\right\|_{2}=\alpha
$$

Mapping: $E_{0} u_{1}=\overline{u_{1}} u_{1}^{H} u_{1}=\overline{u_{1}}$.

## Structured Jordan form for $A \in \mathbb{S}$.

(see [Thompson'91], [Mehl'06], ...)


Induced structure in $X Y^{H}$.


Mapping theorems: $E_{0} u=\beta v$ with $|\beta|=1,\left\|E_{0}\right\|_{2} \approx 1, E_{0} \in \mathbb{S}$.

| (see [Rump'03], [Mackey,Mackey\&Tisseur'06], ...) |  |
| :---: | :---: |
| $\Downarrow$ | $\Downarrow$ 楖 $\downarrow$ |
| $\kappa\left(\lambda_{0}\right)$ | $\approx \kappa\left(\lambda_{0}, \mathbb{S}\right)$ |

Works well for complex Toeplitz, Hankel, persymmetric, Hermitian, symmetric, real Hamiltonian, skew-Hamiltonian,...

Does not work for complex skew-symmetric $\quad \longrightarrow \quad$ can still be done using 'ad hoc' techniques

| Structured Jordan form for $A \in \mathbb{S}$. |  |  |
| :---: | :---: | :---: |
| (see [Thompson'91], [Mehl'06], ...) |  |  |
| $\Downarrow$ | , | $\Downarrow$ |
| Induced structure in $X Y^{H}$. |  |  |
| $\Downarrow$ | $\Downarrow$ | $\Downarrow$ |

Mapping theorems: $E_{0} u=\beta v$ with $|\beta|=1,\left\|E_{0}\right\|_{2} \approx 1, E_{0} \in \mathbb{S}$.


Works well for complex Toeplitz, Hankel, persymmetric, Hermitian, symmetric, real Hamiltonian, skew-Hamiltonian,...
Does not work for complex skew-symmetric $\longrightarrow$ can still be done using 'ad hoc' techniques

For more details (including matrix pencils \& matrix polynomials) see
D. Kressner, M. J. Peláez, and J. Moro. Structured Hölder condition numbers for multiple eigenvalues, preprint, 2006.


Works well for complex Toeplitz, Hankel, persymmetric, Hermitian, symmetric, real Hamiltonian, skew-Hamiltonian,...
Does not work for complex skew-symmetric $\longrightarrow$ can still be done using 'ad hoc' techniques

What about nongeneric perturbations, like skew-symmetric ones in the initial example?

Def: Given $\lambda_{0} \mathrm{e}$-value of $A$, and $Y, X$ matrices of left and right e-vectors as before, a class $\mathbb{S}$ of structured matrices is nongeneric if $n_{\mathbb{S}}<n_{1}$ or, equivalently, if

$$
\sup _{\substack{E \in \mathbb{S} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)=0
$$

Def: Given $\lambda_{0} \mathrm{e}$-value of $A$, and $Y, X$ matrices of left and right e-vectors as before, a class $\mathbb{S}$ of structured matrices is nongeneric if $n_{\mathbb{S}}<n_{1}$ or, equivalently, if

$$
\sup _{\substack{\in \in \mathbb{S} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)=0
$$

For instance, in our initial 4 by 4 example, both $Y=y$ and $X=x$ are vectors, since there is one single largest Jordan block of size 3.

Moreover, $y=\bar{x}$ since $A$ is complex skew-symmetric, so

$$
Y^{H} E X=y^{H} E x=x^{\top} E x=0 \quad \text { for any skew-symmetric } E \in \mathbb{S} \text {. }
$$

## Nongeneric and fully nongeneric structures

Def: Given $\lambda_{0}$ e-value of $A$, and $Y, X$ matrices of left and right e-vectors as before, a class $\mathbb{S}$ of structured matrices is nongeneric if $n_{\mathbb{S}}<n_{1}$ or, equivalently, if

$$
\sup _{\substack{E \in \mathbb{S} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)=0
$$

For instance, in our initial 4 by 4 example, both $Y=y$ and $X=x$ are vectors, since there is one single largest Jordan block of size 3.

Moreover, $y=\bar{x}$ since $A$ is complex skew-symmetric, so

$$
Y^{H} E X=y^{H} E x=x^{T} E x=0 \quad \text { for any skew-symmetric } E \in \mathbb{S} .
$$

## Definition

Given $\lambda_{0}$ e-value of $A$, and $Y, X$ matrices of left and right e-vectors as before, a class $\mathbb{S}$ of structured matrices is said to be fully nongeneric if

$$
Y^{H} E X=0 \quad \text { for any } E \in \mathbb{S}
$$

## Nongeneric and fully nongeneric structures

Def: Given $\lambda_{0}$ e-value of $A$, and $Y, X$ matrices of left and right e-vectors as before, a class $\mathbb{S}$ of structured matrices is nongeneric if $n_{\mathbb{S}}<n_{1}$ or, equivalently, if

$$
\sup _{\substack{E \in \mathbb{S} \\\|E\|_{2} \leq 1}} \rho\left(Y^{H} E X\right)=0
$$

For instance, in our initial 4 by 4 example, both $Y=y$ and $X=x$ are vectors, since there is one single largest Jordan block of size 3.

Moreover, $y=\bar{x}$ since $A$ is complex skew-symmetric, so

$$
Y^{H} E X=y^{H} E x=x^{T} E x=0 \quad \text { for any skew-symmetric } E \in \mathbb{S} .
$$

## Definition

Given $\lambda_{0}$ e-value of $A$, and $Y, X$ matrices of left and right e-vectors as before, a class $\mathbb{S}$ of structured matrices is said to be fully nongeneric if

$$
Y^{H} E X=0 \quad \text { for any } E \in \mathbb{S}
$$

Can we somehow characterize fully nongeneric structures?

## Skew-structures and full nongenericity

Let $\mathbb{S}$ be a linear structure, i.e. $\mathbb{S}$ is a linear subspace of $\mathbb{C}^{n \times n}$.
Def: Let $\mathbb{S}$ be a linear subspace of $\mathbb{C}^{n \times n}$. Then, the skew-structure associated with $\mathbb{S}$ is defined as

$$
\operatorname{Skew}(\mathbb{S})=\left\{B \in \mathbb{C}^{n \times n}: \operatorname{vec}(B)^{H} \operatorname{vec}(A)=0 \quad \forall A \in \mathbb{S}\right\}
$$

where vec $\equiv$ stacking operator.

## Theorem [Peláez \& M. '08]

Let $\lambda_{0}$ be an e-value of $A$ with e-vector matrices $X$ and $Y$. Let $y_{i}, x_{j}$ be, respectively, the columns of $Y$ and $X$, and let $\mathbb{S}$ be a linear structure. Then $\mathbb{S}$ is fully nongeneric for $\lambda_{0}$ if and only if

$$
y_{i}^{H} x_{j} \in \operatorname{Skew}(\mathbb{S}) \quad \text { for every } i, j
$$

The Skew operator produces all the 'customary' skew-families:

| $\mathbb{S}$ | Skew(S) |
| :---: | :---: |
| Symmetric | Skewsymmetric |
| Pseudo Symmetric | Pseudo Skewsymmetric |
| Persymmetric | Perskewsymmetric |
| Hamiltonian | Skew-Hamiltonian |
| Hermitian | Skew-Hermitian |
| Pseudo-Hermitian | Pseudo-Skew-Hermitian |
| Toeplitz | zero d-sums |
| Hankel | zero ad-sums |
| Circulant | zero ed-sums |
| Cocirculant | zero ead-sums |


| $\mathbb{S}$ | Skew(S) |
| :---: | :---: |
| Symmetric | Skewsymmetric |
| Pseudo Symmetric | Pseudo Skewsymmetric |
| Persymmetric | Perskewsymmetric |
| Hamiltonian | Skew-Hamiltonian |
| Hermitian | Skew-Hermitian |
| Pseudo-Hermitian | Pseudo-Skew-Hermitian |
| Toeplitz | zero d-sums |
| Hankel | zero ad-sums |
| Circulant | zero ed-sums |
| Cocirculant | zero ead-sums |

For fully nongeneric structures,

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right) \quad \text { with } n_{\mathbb{S}}<n_{1}
$$

where

- $n_{1}$ is the size of the largest $\lambda_{0}$-Jordan block

For fully nongeneric structures,

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right) \quad \text { with } n_{\mathbb{S}}<n_{1}
$$

where

- $n_{1}$ is the size of the largest $\lambda_{0}$-Jordan block
- How can we find $n_{\mathbb{S}}$ ?

For fully nongeneric structures,

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right) \quad \text { with } n_{\mathbb{S}}<n_{1}
$$

where

- $n_{1}$ is the size of the largest $\lambda_{0}$-Jordan block
- How can we find $n_{\mathbb{S}}$ ?

Use the Newton diagram, a geometric construction which gives both the leading exponents and the leading coefficients in the asymptotic expansions of the roots of a polynomial in two variables.

For fully nongeneric structures,

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right) \quad \text { with } n_{\mathbb{S}}<n_{1}
$$

where

- $n_{1}$ is the size of the largest $\lambda_{0}$-Jordan block
- How can we find $n_{\mathbb{S}}$ ?

Use the Newton diagram, a geometric construction which gives both the leading exponents and the leading coefficients in the asymptotic expansions of the roots of a polynomial in two variables.
In our case,

$$
p(\lambda, \varepsilon)=\operatorname{det}(A+\varepsilon E-\lambda I)
$$

the characteristic polynomial of $A(\varepsilon)=A+\varepsilon E$.

For fully nongeneric structures,

$$
\kappa\left(\lambda_{0}\right)=\left(n_{1}, \alpha\right), \quad \kappa\left(\lambda_{0}, \mathbb{S}\right)=\left(n_{\mathbb{S}}, \alpha_{\mathbb{S}}\right) \quad \text { with } n_{\mathbb{S}}<n_{1}
$$

where

- $n_{1}$ is the size of the largest $\lambda_{0}$-Jordan block
- How can we find $n_{\mathbb{S}}$ ?

Use the Newton diagram, a geometric construction which gives both the leading exponents and the leading coefficients in the asymptotic expansions of the roots of a polynomial in two variables.
In our case,

$$
p(\lambda, \varepsilon)=\operatorname{det}(A+\varepsilon E-\lambda I)
$$

the characteristic polynomial of $A(\varepsilon)=A+\varepsilon E$.
How does the Newton diagram work?

Write the characteristic polynomial $p(\lambda, \varepsilon)=\operatorname{det}(A+\varepsilon E-\lambda I)$ of the perturbed matrix as a polynomial in $\lambda$ with $\varepsilon$-dependent coefficients, e.g.,

$$
p(\lambda, \varepsilon)=\lambda^{4}+\left(2 \varepsilon-\varepsilon^{2}\right) \lambda^{3}+\varepsilon^{2} \lambda^{2}+\left(\varepsilon-\varepsilon^{3}\right) \lambda+\varepsilon^{2}
$$

Draw a cartesian grid and label the axes with $\lambda, \varepsilon$


Write the characteristic polynomial $p(\lambda, \varepsilon)=\operatorname{det}(A+\varepsilon E-\lambda /)$ of the perturbed matrix as a polynomial in $\lambda$ with $\varepsilon$-dependent coefficients, e.g.,

$$
p(\lambda, \varepsilon)=\lambda^{4}+\left(2 \varepsilon-\varepsilon^{2}\right) \lambda^{3}+\varepsilon^{2} \lambda^{2}+\left(\varepsilon-\varepsilon^{3}\right) \lambda+\varepsilon^{2}
$$

Consider only the dominant terms
Step 1: plot a point for each dominant $\varepsilon^{p} \lambda^{q}$ terms


Write the characteristic polynomial $p(\lambda, \varepsilon)=\operatorname{det}(A+\varepsilon E-\lambda /)$ of the perturbed matrix as a polynomial in $\lambda$ with $\varepsilon$-dependent coefficients, e.g.,

$$
p(\lambda, \varepsilon)=\lambda^{4}+\left(2 \varepsilon-\varepsilon^{2}\right) \lambda^{3}+\varepsilon^{2} \lambda^{2}+\left(\varepsilon-\varepsilon^{3}\right) \lambda+\varepsilon^{2}
$$

Consider only the dominant terms
Step 2: draw the lower boundary of the convex hull: that's the ND


Write the characteristic polynomial $p(\lambda, \varepsilon)=\operatorname{det}(A+\varepsilon E-\lambda /)$ of the perturbed matrix as a polynomial in $\lambda$ with $\varepsilon$-dependent coefficients, e.g.,

$$
p(\lambda, \varepsilon)=\lambda^{4}+\left(2 \varepsilon-\varepsilon^{2}\right) \lambda^{3}+\varepsilon^{2} \lambda^{2}+\left(\varepsilon-\varepsilon^{3}\right) \lambda+\varepsilon^{2}
$$

Consider only the dominant terms
Step 1: each slope is a leading power in the Puiseux $\varepsilon$-expansion


Unstructured perturbation
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{llll}e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44}\end{array}\right] \in \mathbb{C}^{4 \times 4}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\tilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ \Phi & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ with $\quad \Phi=y^{H} E x$,

The $4 \times 4$ example: leading exponents via the ND
Unstructured perturbation
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{llll}e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44}\end{array}\right] \in \mathbb{C}^{4 \times 4}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\widetilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ \phi & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ with $\quad \Phi=y^{H} E x$,
Step 1: plot the points


Unstructured perturbation
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{llll}e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44}\end{array}\right] \in \mathbb{C}^{4 \times 4}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\widetilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ \Phi & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ with $\quad \Phi=y^{H} E x$,
Step 2: draw lower boundary of convex hull


The $4 \times 4$ example: leading exponents via the ND
Unstructured perturbation
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{llll}e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44}\end{array}\right] \in \mathbb{C}^{4 \times 4}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\tilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ \phi & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ with $\quad \phi=y^{H} E x$,
Step 2: draw lower boundary of convex hull


Smallest slope $1 / 3 \quad \Rightarrow n_{1}=3$

The $4 \times 4$ example: leading exponents via the ND
Unstructured perturbation
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{llll}e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44}\end{array}\right] \in \mathbb{C}^{4 \times 4}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\widetilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ \phi & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ with $\quad \phi=y^{H} E x$,
The term in $\lambda \varepsilon$ is present only if $\Phi=y^{H} E x \neq 0$


Smallest slope $1 / 3 \quad \Rightarrow n_{1}=3$

Structured perturbation
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{cccc}0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0\end{array}\right] \in \mathbb{S}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\tilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ since $\quad \phi=y^{H} E x=0$.

## Structured perturbation

$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{cccc}0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0\end{array}\right] \in \mathbb{S}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\widetilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ since $\quad \Phi=y^{H} E x=0$.
Step 1: plot the points


## Structured perturbation

$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{cccc}0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0\end{array}\right] \in \mathbb{S}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\widetilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ since $\quad \phi=y^{H} E x=0$.
Step 2: draw lower boundary of convex hull


The $4 \times 4$ example: leading exponents via the ND
Structured perturbation
$\left[\begin{array}{cccc}0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0\end{array}\right]+\varepsilon E, \quad E=\left[\begin{array}{cccc}0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0\end{array}\right] \in \mathbb{S}$
If $P^{-1} A P=J$, then $P^{-1}(A+\varepsilon E) P=J+\widetilde{E}$, where $J=J_{3}(0) \oplus J_{1}(0)$ and
$\widetilde{E}=P^{-1} E P=\left[\begin{array}{lll|l}* & * & * & * \\ * & * & * & * \\ 0 & * & * & * \\ \hline * & * & * & *\end{array}\right], \quad$ since $\quad \Phi=y^{H} E x=0$.
Step 2: draw lower boundary of convex hull


Only slope $1 / 2 \Rightarrow n_{1}=2$

Same can be done in general for arbitrary fully nongeneric structure:


Bending point disappears from ND as soon as perturbations become fully nongeneric, i.e., when

$$
Y^{H} E X=0 \text { for all } E \in \mathbb{S} \text {. }
$$

Same can be done in general for arbitrary fully nongeneric structure:


- For perturbations in $\mathbb{S}$, identify most likely points to lie on lowest segment in the ND
- Depend on sizes $n_{1}, n_{2}$ and numbers $r_{1}, r_{2}$ of $\lambda_{0}$-Jordan blocks. Possibly, also on the structure $\mathbb{S}$

Same can be done in general for arbitrary fully nongeneric structure:


Finally, determine the reciprocal

$$
n_{\mathbb{S}}<n_{1}
$$

of the lowest possible slope

Same can be done in general for arbitrary fully nongeneric structure:


Finally, determine the reciprocal

$$
n_{\mathbb{S}}<n_{1}
$$

of the lowest possible slope

In this way, explicit formulas can be found for $n_{\mathbb{S}}$, depending on the quantities $n_{1}, n_{2}, r_{1}, r_{2}$

- Entry-wise information on the structure is important, to assess which points are present on the grid when the perturbations are structured.
- Otherwise, the formulas give just upper bounds on $n_{\mathbb{S}}$
- Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.
- Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.
- So far, not many significant differences between structured and unstructured condition number for generic structures except for a small number of special cases
Main tools: structured canonical forms + mapping theorems
- Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.
- So far, not many significant differences between structured and unstructured condition number for generic structures except for a small number of special cases
Main tools: structured canonical forms + mapping theorems
- First component $n_{\mathbb{S}}$ of structured condition number can be obtained for fully nongeneric structures

Main tool: Newton diagram.

- Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.
- So far, not many significant differences between structured and unstructured condition number for generic structures except for a small number of special cases
Main tools: structured canonical forms + mapping theorems
- First component $n_{\mathbb{S}}$ of structured condition number can be obtained for fully nongeneric structures

Main tool: Newton diagram.

- Still several relevant classes to be explored (e.g., zero structures).

