

Julio Moro

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

Joint work with

Daniel Kressner & María J. Peláez

Structured Numerical Linear Algebra Problems: Analysis, Algorithms and Applications

Cortona September 15 - 19, 2008

Consider the complex skew-symmetric matrix

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{array} \right],$$

which has one single eigenvalue $\lambda_0 = 0$ and Jordan form

$$J_3(0) \oplus J_1(0)$$
.

Consider the complex skew-symmetric matrix

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{array} \right],$$

which has one single eigenvalue $\lambda_0 = 0$ and Jordan form

$$J_3(0) \oplus J_1(0)$$
.

If A is subject to a small perturbation

$$A(\varepsilon) = A + \varepsilon E, \qquad \varepsilon << 1,$$

with E an arbitrary 4×4 complex matrix, then $A(\varepsilon)$ has generically three eigenvalues of order $O(\varepsilon^{1/3})$, and one of order $O(\varepsilon)$.

Consider the complex skew-symmetric matrix

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{array} \right],$$

which has one single eigenvalue $\lambda_0 = 0$ and Jordan form

$$J_3(0) \oplus J_1(0)$$
.

If A is subject to a small perturbation

$$A(\varepsilon) = A + \varepsilon E, \qquad \varepsilon << 1,$$

with E an arbitrary 4×4 complex matrix, then $A(\varepsilon)$ has generically three eigenvalues of order $O(\varepsilon^{1/3})$, and one of order $O(\varepsilon)$.

• However, if E is restricted to be complex skew-symmetric, then $A(\varepsilon)$ has generically four eigenvalues of order $O(\varepsilon^{1/2})$.

Consider the complex skew-symmetric matrix

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{array} \right],$$

which has one single eigenvalue $\lambda_0=0$ and Jordan form $\,$

$$J_3(0) \oplus J_1(0)$$
.

• If A is subject to a **small** perturbation

$$A(\varepsilon) = A + \varepsilon E, \qquad \varepsilon << 1,$$

with E an arbitrary 4×4 complex matrix, then $A(\varepsilon)$ has generically three eigenvalues of order $O(\varepsilon^{1/3})$, and one of order $O(\varepsilon)$.

• However, if E is restricted to be complex skew-symmetric, then $A(\varepsilon)$ has generically four eigenvalues of order $O(\varepsilon^{1/2})$.

Sensitivity under structured perturbation qualitatively different than under unstructured perturbation

Outline

- 1) Hölder condition numbers (structured & unstructured) for multiple eigenvalues
- 2) Comparing structured and unstructured condition numbers for
 - **2.1) generic** structured perturbations
 - 2.2) nongeneric structured perturbations
- 3) Concluding remarks

Condition numbers for simple eigenvalues

• Let λ_0 be a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$, $\|\cdot\|$ matrix 2-norm.

Definition

The condition number of λ_0 is

$$\kappa(\lambda_0) = \lim_{\varepsilon \to 0} \sup \left\{ \frac{|\Delta \lambda|}{\varepsilon} \, : \, E \in \mathbb{C}^{n \times n}, \|E\| \leq 1, \, \lambda_0 + \Delta \lambda \in \operatorname{sp}(A + \varepsilon E) \right\}$$

Condition numbers for simple eigenvalues

• Let λ_0 be a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$, $\|\cdot\|$ matrix 2-norm.

Definition

The condition number of λ_0 is

$$\kappa(\lambda_0) = \lim_{\varepsilon \to 0} \sup \left\{ \frac{|\Delta \lambda|}{\varepsilon} \, : \, E \in \mathbb{C}^{n \times n}, \|E\| \leq 1, \, \lambda_0 + \Delta \lambda \in \operatorname{sp}(A + \varepsilon E) \right\}$$

• If x (resp. y) right (resp. left) e-vector corresp. to λ_0 with $y^H x = 1$, then

$$\kappa(\lambda_0) = \|x\| \|y\|$$

Condition numbers for simple eigenvalues

• Let λ_0 be a simple eigenvalue of $A \in \mathbb{C}^{n \times n}$, $\|\cdot\|$ matrix 2-norm.

Definition

The condition number of λ_0 is

$$\kappa(\lambda_0) = \lim_{\varepsilon \to 0} \sup \left\{ \frac{|\Delta \lambda|}{\varepsilon} \, : \, E \in \mathbb{C}^{n \times n}, \|E\| \leq 1, \, \lambda_0 + \Delta \lambda \in \operatorname{sp}(A + \varepsilon E) \right\}$$

• If x (resp. y) right (resp. left) e-vector corresp. to λ_0 with $y^H x = 1$, then

$$\kappa(\lambda_0) = \|x\| \, \|y\|$$

But: if λ_0 is defective, then generically

$$\frac{\Delta \lambda}{\varepsilon} \to \infty \quad \text{as } \ \varepsilon \to 0 \quad \Longrightarrow \quad \text{Need} \neq \text{definition for } \kappa(\lambda_0)$$

Structured perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric, Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

- look for numerical algorithms that preserve the structure and spectral properties of the problem
- may lead to significantly faster and/or more accurate solutions,

Structured perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric, Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

- look for numerical algorithms that preserve the structure and spectral properties of the problem
- may lead to significantly faster and/or more accurate solutions,

Hence, if $A \in S$, class of structured matrices, \Longrightarrow measure sensitivity with respect to perturbations $E \in S$.

Leads to <u>structured</u> condition numbers.

$$\kappa(\lambda_0, \mathbb{S}) = \lim_{\epsilon \to 0} \text{sup} \left\{ \frac{|\Delta \lambda|}{\epsilon} \, : \, \underline{\textbf{\textit{E}}} \in \mathbb{S}, \, \|\textbf{\textit{E}}\| \leq 1 \, , \, \lambda_0 + \Delta \lambda \in \text{sp}(\textbf{\textit{A}} + \epsilon \textbf{\textit{E}}) \right\}.$$

Structured perturbations

If the eigenproblem has some special structure (symmetric, skew-symmetric, Toeplitz, Hankel, zero patterns, symplectic, Hamiltonian,...)

- look for numerical algorithms that preserve the structure and spectral properties of the problem
- may lead to significantly faster and/or more accurate solutions,

Hence, if $A \in \mathbb{S}$, class of structured matrices, \implies measure sensitivity with respect to perturbations $E \in \mathbb{S}$.

Leads to structured condition numbers.

$$\kappa(\lambda_0,\mathbb{S}) = \lim_{\epsilon \to 0} \sup \left\{ \frac{|\Delta \lambda|}{\epsilon} : \textbf{\textit{E}} \in \mathbb{S}, \|\textbf{\textit{E}}\| \leq 1 \,, \, \lambda_0 + \Delta \lambda \in \text{sp}(\textbf{\textit{A}} + \epsilon \textbf{\textit{E}}) \right\}.$$

Question:

Is $\kappa(\lambda_0, \mathbb{S})$ much smaller than $\kappa(\lambda_0)$?

Structured spectral condition numbers

Many relevant contributions on structured condition numbers of simple eigenvalues

```
[Tisseur '03]

[Byers & Kressner '03]

[Noschese & Pasquini '06, '07]

[Karow, Kressner & Tisseur '06]

[Tisseur & Graillat '06]

[Bora '06]
```

as well as for structured pseudospectra

[Rump '06] [Karow '06]

Structured spectral condition numbers

Many relevant contributions on structured condition numbers of simple eigenvalues

```
[Tisseur '03]
[Byers & Kressner '03]
[Noschese & Pasquini '06, '07]
[Karow, Kressner & Tisseur '06]
[Tisseur & Graillat '06]
[Bora '06]
```

as well as for structured pseudospectra

```
[Rump '06]
[Karow '06]
```

How about condition numbers for multiple, defective eigenvalues?

First order perturbation theory

• Let λ_0 be a **multiple** e-value of $A \in \mathbb{C}^{n \times n}$, and let $n_1 \equiv$ size of largest Jordan block corresp. to λ_0 .

Then, the worst-case behaviour of λ_0 under small perturbations $A+\epsilon E$ corresponds to

$$\widehat{\lambda}(\varepsilon) = \lambda_0 + (\xi_k)^{1/n_1} \varepsilon^{1/n_1} + o(\varepsilon^{1/n_1}),$$

where ξ_k are the eigenvalues of a product $Y^H E X$

[Lidskii '66]

First order perturbation theory

 Let λ₀ be a multiple e-value of A ∈ C^{n×n}, and let n₁ ≡ size of largest Jordan block corresp. to λ₀.

Then, the worst-case behaviour of λ_0 under small perturbations $A+\varepsilon E$ corresponds to

$$\widehat{\lambda}(\varepsilon) = \lambda_0 + (\xi_k)^{1/n_1} \varepsilon^{1/n_1} + o(\varepsilon^{1/n_1}),$$

where ξ_k are the eigenvalues of a product $Y^H E X$

[Lidskii '66]

Let

$$P^{-1}AP = \left[\begin{array}{cc} J_0 & 0 \\ 0 & * \end{array} \right]$$

be a Jordan form of A, where J_0 gathers all r_1 Jordan blocks of size n_1 corresp. to λ_0 . Then

$$Y^H E X \in \mathbb{C}^{r_1 \times r_1}$$
, where

- X contains those columns of P which are right e-vectors of A corresp. to blocks of largest size n₁ in J₀.
- Y^H contains those rows of P^{-1} which are left e-vectors of A corresp. to blocks of largest size n_1 in J_0 .

Lidskii's theory shows that worst-case behavior is

$$|\Delta \lambda| = |\lambda(\varepsilon) - \lambda_0| \le |\xi_k|^{1/n_1} \varepsilon^{1/n_1} + \dots$$

Lidskii's theory shows that worst-case behavior is

$$|\Delta \lambda| = |\lambda(\varepsilon) - \lambda_0| \le |\xi_k|^{1/n_1} \varepsilon^{1/n_1} + \ldots \le \rho (Y^H E X)^{1/n_1} \varepsilon^{1/n_1} + \ldots$$

Lidskii's theory shows that worst-case behavior is

$$|\Delta\lambda| = |\lambda(\varepsilon) - \lambda_0| \le |\xi_k|^{1/n_1} \varepsilon^{1/n_1} + \ldots \le \rho (Y^H EX)^{1/n_1} \varepsilon^{1/n_1} + \ldots$$

Definition [M., Burke & Overton '97]

 λ_0 multiple e-value of $A \in \mathbb{C}^{n \times n}$,

 $n_1 \equiv \text{largest size}$ of Jordan blocks J_{λ_0} in Jordan form of A

 $Y \equiv \text{left e-vectors taken from all } n_1 \times n_1 \text{ Jordan blocks } J_{\lambda_0}.$

 $X \equiv \text{right e-vectors}$ taken from all $n_1 \times n_1$ Jordan blocks J_{λ_0} .

The Hölder condition number of λ_0 is the pair $\kappa(\lambda_0) = (n_1, \alpha)$, where

$$\alpha = \sup_{\substack{E \in \mathbb{C}^{n \times n} \\ ||E|| \le 1}} \rho(Y^H E X), \qquad \rho(\cdot) \equiv \text{ spectral radius}$$

Lidskii's theory shows that worst-case behavior is

$$|\Delta \lambda| = |\lambda(\epsilon) - \lambda_0| \leq |\xi_{\textbf{k}}|^{1/n_1} \epsilon^{1/n_1} + \ldots \leq \rho (Y^H E X)^{1/n_1} \epsilon^{1/n_1} + \ldots$$

Definition [M., Burke & Overton '97]

 λ_0 multiple e-value of $A \in \mathbb{C}^{n \times n}$,

 $n_1 \equiv \text{largest size}$ of Jordan blocks J_{λ_0} in Jordan form of A

 $Y \equiv \text{left e-vectors taken from all } n_1 \times n_1 \text{ Jordan blocks } J_{\lambda_0}.$

 $X \equiv \text{right e-vectors}$ taken from all $n_1 \times n_1$ Jordan blocks J_{λ_0} .

The Hölder condition number of λ_0 is the pair $\kappa(\lambda_0) = (n_1, \alpha)$, where

$$\alpha = \sup_{\substack{E \in \mathbb{C}^{n \times n} \\ ||E|| \leq 1}} \rho(Y^H E X), \qquad \rho(\cdot) \equiv \text{ spectral radius}$$

One can prove that for any unitarily invariant matrix norm,

$$\alpha = \|XY^H\|_2$$

Again, if $\lambda_0 \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$\kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}),$$

where

Again, if $\lambda_0 \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$\kappa(\lambda_0, \mathbb{S}) = (\underline{n}_{\mathbb{S}}, \underline{\alpha}_{\mathbb{S}}),$$

where

• $n_{\mathbb{S}}$ = reciprocal of smallest possible leading exponent in asymptotic expansions of $\widehat{\lambda}(\varepsilon) - \lambda_0$ among all $E \in \mathbb{S}$.

Again, if $\lambda_0 \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$\kappa(\lambda_0, \mathbb{S}) = (\underline{n}_{\mathbb{S}}, \underline{\alpha}_{\mathbb{S}}),$$

where

- $n_{\mathbb{S}}$ = reciprocal of smallest possible leading exponent in asymptotic expansions of $\widehat{\lambda}(\varepsilon) \lambda_0$ among all $E \in \mathbb{S}$.
- α_S = maximal value for leading coefficient of asymptotic expansions among all E∈ S giving rise to O(ε^{1/n}s) expansions.

Again, if $\lambda_0 \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$\kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}),$$

where

- $n_{\mathbb{S}}$ = reciprocal of smallest possible leading exponent in asymptotic expansions of $\widehat{\lambda}(\varepsilon) \lambda_0$ among all $\underline{E} \in \mathbb{S}$.
- α_S = maximal value for leading coefficient of asymptotic expansions among all E ∈ S giving rise to O(ε^{1/n_S}) expansions.

Our goal: Determine and compare the **structured** and **unstructured** condition numbers of defective e-values for particular classes $\mathbb S$ of matrices, e.g.,

complex symmetric, skew-symmetric, persymmetric, skew-Hermitian, Toeplitz, symmetric Toeplitz, Hankel, zero-structured, Hamiltonian, skew-Hamiltonian, symplectic,...

Again, if $\lambda_0 \in \operatorname{sp}(A)$ for $A \in \mathbb{S}$, class of structured matrices, define structured Hölder condition number as a pair

$$\kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}),$$

where

- n_S = reciprocal of smallest possible leading exponent in asymptotic expansions of λ̂(ε) λ₀ among all *E* ∈ S.
- $\alpha_{\mathbb{S}} \equiv \text{maximal value for leading coefficient of asymptotic expansions}$ among all $E \in \mathbb{S}$ giving rise to $O(\varepsilon^{1/n_{\mathbb{S}}})$ expansions.

Important:

 $n_{\mathbb{S}}$ may be strictly smaller than n_1 ,

e.g. as in the initial 4×4 complex skew-symmetric example,

where
$$n_1 = 3$$
, $n_{\mathbb{S}} = 2$, and

 $S \equiv$ skew-symmetric matrices

Generic structures

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}).$$

First, consider the generic situation when

$$n_{\mathbb{S}} = n_1$$

i.e., there is some $E \in \mathbb{S}$ giving rise to a perturbation expansion of order $O(\varepsilon^{1/n_1})$.

Generic structures

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}).$$

First, consider the generic situation when

$$n_{\mathbb{S}}=n_{1}$$

i.e., there is some $E \in \mathbb{S}$ giving rise to a perturbation expansion of order $O(\varepsilon^{1/n_1})$. In that case,

$$\alpha = \sup_{\substack{E \in \mathbb{C}^{n \times n} \\ \|E\|_2 \le 1}} \rho(Y^H E X) = \|XY^H\|_2, \qquad \qquad \alpha_{\mathbb{S}} = \sup_{\substack{E \in \mathbb{S} \\ \|E\|_2 \le 1}} \rho(Y^H E X)$$

and we want to know whether $\alpha_{\mathbb{S}} << \alpha$ or not.

Generic structures

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}).$$

First, consider the generic situation when

$$n_{\mathbb{S}} = n_1$$
,

i.e., there is some $E \in \mathbb{S}$ giving rise to a perturbation expansion of order $O(\varepsilon^{1/n_1})$. In that case,

$$\alpha = \sup_{\substack{E \in \mathbb{C}^{n \times n} \\ \|E\|_2 \leq 1}} \rho(Y^H E X) = \|XY^H\|_2, \qquad \qquad \alpha_{\mathbb{S}} = \sup_{\substack{E \in \mathbb{S} \\ \|E\|_2 \leq 1}} \rho(Y^H E X)$$

and we want to know whether $\alpha_{\mathbb{S}} << \alpha$ or not.

Usually, look first for some $E_{\mathbb{S}} \in \mathbb{S}$ such that

$$\rho(Y^H E_{\mathbb{S}} X) \approx ||XY^H||.$$

Then,

$$\kappa(\lambda_0, \mathbb{S}) \approx \kappa(\lambda_0).$$

Generic structures (II)

$$\begin{array}{c|c} \textbf{Structured Jordan form for } A \in \mathbb{S}. \\ \text{(see [Thompson'91], [Mehl'06], ...)} \\ & \downarrow & \downarrow & \downarrow \\ \hline & \textbf{Induced structure in } XY^H. \\ \hline & \downarrow & \downarrow & \downarrow \\ \hline \textbf{Mapping theorems: } E_0u = \beta v \text{ with } |\beta| = 1, \ \|E_0\|_2 \approx 1, \ E_0 \in \mathbb{S}. \\ \hline & \text{(see [Rump'03], [Mackey,Mackey&Tisseur'06], ...)} \\ & \downarrow & \downarrow & \downarrow \\ \hline & \kappa(\lambda_0) \approx \kappa(\lambda_0, \mathbb{S}) \\ \hline \end{array}$$

Generic structures (II)

Structured Jordan form for
$$A \in \mathbb{S}$$
.

Mapping theorems: $E_0 u = \beta v$ with $|\beta| = 1$, $||E_0||_2 \approx 1$, $||E_0||_2 \approx 1$,

(see [Rump'03], [Mackey,Mackey&Tisseur'06], ...)

Take, for instance, $S \equiv \text{complex symm.}$ matrices. Then

$$Y = \overline{X}$$
, i.e., $\alpha = \|XY^H\|_2 = \|XX^T\|_2$.

Let $XX^T = U\Sigma U^T$ be a Takagi factorization (i.e., an SVD), and let $u_1 = Ue_1$ Set $\underline{E_0} = \overline{u_1}u_1^H \in \mathbb{S}$. Then,

$$\rho(\boldsymbol{E}_{0}XX^{T}) = \rho(\overline{\boldsymbol{u}_{1}}\boldsymbol{u}_{1}^{H}XX^{T}) = \rho(\boldsymbol{u}_{1}^{H}XX^{T}\overline{\boldsymbol{u}_{1}}) = \sigma_{\max}(XX^{T}) = \|XX^{T}\|_{2} = \alpha$$

Mapping: $E_0 u_1 = \overline{u_1} u_1^H u_1 = \overline{u_1}$.

Generic structures (III)

$$\begin{array}{c} \textbf{Structured Jordan form for } A \in \mathbb{S}. \\ (\text{see [Thompson'91], [Mehl'06], ...})} \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \hline \textbf{Induced structure in } XY^H. \\ \hline \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \hline \textbf{Mapping theorems: } \textit{E}_0\textit{u} = \beta\textit{v} \text{ with } |\beta| = 1, \; ||\textit{E}_0||_2 \approx 1, \; \textit{E}_0 \in \mathbb{S}. \\ \hline (\text{see [Rump'03], [Mackey,Mackey&Tisseur'06], ...})} \\ \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \hline \textit{\kappa}(\lambda_0) \; \approx \; \kappa(\lambda_0, \mathbb{S}) \\ \hline \end{array}$$

Works well for *complex* Toeplitz, Hankel, persymmetric, Hermitian, symmetric, *real* Hamiltonian, skew-Hamiltonian,...

Does **not** work for complex skew-symmetric — can still be done using 'ad hoc' techniques

Generic structures (III)

Structured Jordan form for
$$A \in \mathbb{S}$$
.

(see [Thompson'91], [Mehl'06], ...)

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

Induced structure in XY^H .

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

Mapping theorems: $E_0u = \beta v$ with $|\beta| = 1$, $||E_0||_2 \approx 1$, $E_0 \in \mathbb{S}$.

(see [Rump'03], [Mackey,Mackey&Tisseur'06], ...)

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
 $\kappa(\lambda_0) \approx \kappa(\lambda_0, \mathbb{S})$

Works well for *complex* Toeplitz, Hankel, persymmetric, Hermitian, symmetric, *real* Hamiltonian, skew-Hamiltonian,...

Does **not** work for complex skew-symmetric — can still be done using 'ad hoc' techniques

For more details (including matrix pencils & matrix polynomials) see

D. Kressner, M. J. Peláez, and J. Moro. Structured Hölder condition numbers for multiple eigenvalues, preprint, 2006.

Generic structures (III)

Works well for *complex* Toeplitz, Hankel, persymmetric, Hermitian, symmetric, *real* Hamiltonian, skew-Hamiltonian,...

Does **not** work for complex skew-symmetric — can still be done using 'ad hoc' techniques

What about **nongeneric** perturbations, like **skew-symmetric** ones in the initial example?

Nongeneric and fully nongeneric structures

Def: Given λ_0 e-value of A, and Y, X matrices of left and right e-vectors as before, a class S of structured matrices is **nongeneric** if $n_S < n_1$ or, equivalently, if

$$\sup_{\substack{E\in\mathbb{S}\\\|E\|_2\leq 1}}\rho(Y^HEX)=0$$

Nongeneric and fully nongeneric structures

Def: Given λ_0 e-value of A, and Y, X matrices of left and right e-vectors as before, a class S of structured matrices is **nongeneric** if $n_S < n_1$ or, equivalently, if

$$\sup_{\substack{E\in \mathbb{S}\\\|E\|_2\leq 1}}\rho(Y^HEX)=0$$

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors, since there is one single largest Jordan block of size 3.

Moreover, $y = \overline{x}$ since A is complex skew-symmetric, so

$$Y^H E X = y^H E x = x^T E x = 0$$
 for any skew-symmetric $E \in \mathbb{S}$.

Nongeneric and fully nongeneric structures

Def: Given λ_0 e-value of A, and Y, X matrices of left and right e-vectors as before, a class S of structured matrices is **nongeneric** if $n_S < n_1$ or, equivalently, if

$$\sup_{\substack{E \in \mathbb{S} \\ ||E||_2 \le 1}} \rho(Y^H E X) = 0$$

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors, since there is one single largest Jordan block of size 3.

Moreover, $y = \overline{x}$ since A is complex skew-symmetric, so

$$Y^H E X = y^H E x = x^T E x = 0$$
 for any skew-symmetric $E \in S$.

Definition

Given λ_0 e-value of A, and Y, X matrices of left and right e-vectors as before, a class S of structured matrices is said to be **fully** nongeneric if

$$Y^H E X = 0$$
 for any $E \in S$.

Nongeneric and fully nongeneric structures

Def: Given λ_0 e-value of A, and Y, X matrices of left and right e-vectors as before, a class S of structured matrices is **nongeneric** if $n_S < n_1$ or, equivalently, if

$$\sup_{\substack{E\in\mathbb{S}\\\|E\|_2\leq 1}}\rho(Y^HEX)=0$$

For instance, in our initial 4 by 4 example, both Y = y and X = x are vectors, since there is one single largest Jordan block of size 3.

Moreover, $y = \overline{x}$ since A is complex skew-symmetric, so

$$Y^H E X = y^H E x = x^T E x = 0$$
 for any skew-symmetric $E \in S$.

Definition

Given λ_0 e-value of A, and Y, X matrices of left and right e-vectors as before, a class S of structured matrices is said to be **fully** nongeneric if

$$Y^H E X = 0$$
 for any $E \in S$.

Can we somehow characterize fully nongeneric structures?

Skew-structures and full nongenericity

Let S be a **linear structure**, i.e. S is a linear subspace of $\mathbb{C}^{n \times n}$.

Def: Let $\mathbb S$ be a **linear subspace** of $\mathbb C^{n\times n}$. Then, the **skew-structure** associated with $\mathbb S$ is defined as

$$Skew(\mathbb{S}) = \{B \in \mathbb{C}^{n \times n} : vec(B)^H vec(A) = 0 \quad \forall A \in \mathbb{S}\},$$

where vec≡ stacking operator.

Theorem [Peláez & M. '08]

Let λ_0 be an e-value of A with e-vector matrices X and Y. Let y_i, x_j be, respectively, the columns of Y and X, and let $\mathbb S$ be a linear structure. Then $\mathbb S$ is fully nongeneric for λ_0 if and only if

$$y_i^H x_j \in Skew(\mathbb{S})$$
 for every i, j

The Skew operator produces all the 'customary' skew-families:

Some linear structures and their skew-structures

S	$\mathit{Skew}(\mathbb{S})$
Symmetric	Skewsymmetric
Pseudo Symmetric	Pseudo Skewsymmetric
Persymmetric	Perskewsymmetric
Hamiltonian	Skew-Hamiltonian
Hermitian	Skew-Hermitian
Pseudo-Hermitian	Pseudo-Skew-Hermitian
Toeplitz	zero d-sums
Hankel	zero ad-sums
Circulant	zero ed-sums
Cocirculant	zero ead-sums

Some linear structures and their skew-structures

S	Skew(S)
Symmetric	Skewsymmetric
Pseudo Symmetric	Pseudo Skewsymmetric
Persymmetric	Perskewsymmetric
Hamiltonian	Skew-Hamiltonian
Hermitian	Skew-Hermitian
Pseudo-Hermitian	Pseudo-Skew-Hermitian
Toeplitz	zero d-sums
Hankel	zero ad-sums
Circulant	zero ed-sums
Cocirculant	zero ead-sums

For fully nongeneric structures,

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}) \qquad \text{with } n_{\mathbb{S}} < n_1,$$

where

• n_1 is the size of the largest λ_0 -Jordan block

For fully nongeneric structures,

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}) \qquad \text{with } n_{\mathbb{S}} < n_1,$$

where

- n_1 is the size of the largest λ_0 -Jordan block
- How can we find $n_{\mathbb{S}}$?

For fully nongeneric structures,

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}) \qquad \text{with } n_{\mathbb{S}} < n_1,$$

where

- n_1 is the size of the largest λ_0 -Jordan block
- How can we find $n_{\mathbb{S}}$?

Use the **Newton diagram**, a geometric construction which gives both the leading exponents and the leading coefficients in the asymptotic expansions of the *roots of a polynomial in two variables*.

For fully nongeneric structures,

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}) \qquad \text{with } n_{\mathbb{S}} < n_1,$$

where

- n_1 is the size of the largest λ_0 -Jordan block
- How can we find $n_{\mathbb{S}}$?

Use the **Newton diagram**, a geometric construction which gives both the leading exponents and the leading coefficients in the asymptotic expansions of the *roots of a polynomial in two variables*.

In our case,

$$p(\lambda,\varepsilon) = \det(A + \varepsilon E - \lambda I),$$

the characteristic polynomial of $A(\varepsilon) = A + \varepsilon E$.

For fully nongeneric structures,

$$\kappa(\lambda_0) = (n_1, \alpha), \qquad \kappa(\lambda_0, \mathbb{S}) = (n_{\mathbb{S}}, \alpha_{\mathbb{S}}) \qquad \text{with } n_{\mathbb{S}} < n_1,$$

where

- n_1 is the size of the largest λ_0 -Jordan block
- How can we find $n_{\mathbb{S}}$?

Use the **Newton diagram**, a geometric construction which gives both the leading exponents and the leading coefficients in the asymptotic expansions of the *roots of a polynomial in two variables*.

In our case,

$$p(\lambda, \varepsilon) = \det(A + \varepsilon E - \lambda I),$$

the characteristic polynomial of $A(\varepsilon) = A + \varepsilon E$.

How does the Newton diagram work?

Write the characteristic polynomial $p(\lambda, \varepsilon) = \det(A + \varepsilon E - \lambda I)$ of the perturbed matrix as a polynomial in λ with ε -dependent coefficients, e.g.,

$$p(\lambda,\varepsilon) = \lambda^4 + (2\varepsilon - \varepsilon^2)\lambda^3 + \varepsilon^2\lambda^2 + (\varepsilon - \varepsilon^3)\lambda + \varepsilon^2$$

Draw a cartesian grid and label the axes with λ, ε

Write the characteristic polynomial $p(\lambda, \varepsilon) = \det(A + \varepsilon E - \lambda I)$ of the perturbed matrix as a polynomial in λ with ε -dependent coefficients, e.g.,

$$p(\lambda,\varepsilon) = \lambda^4 + (2\varepsilon - \varepsilon^2)\lambda^3 + \varepsilon^2\lambda^2 + (\varepsilon - \varepsilon^3)\lambda + \varepsilon^2$$

Consider only the dominant terms

Step 1: plot a point for each dominant $\varepsilon^p \lambda^q$ terms

Write the characteristic polynomial $p(\lambda, \varepsilon) = \det(A + \varepsilon E - \lambda I)$ of the perturbed matrix as a polynomial in λ with ε -dependent coefficients, e.g.,

$$p(\lambda,\varepsilon) = \lambda^4 + (2\varepsilon - \varepsilon^2)\lambda^3 + \varepsilon^2\lambda^2 + (\varepsilon - \varepsilon^3)\lambda + \varepsilon^2$$

Consider only the dominant terms

Step 2: draw the lower boundary of the convex hull: that's the ND

Write the characteristic polynomial $p(\lambda, \varepsilon) = \det(A + \varepsilon E - \lambda I)$ of the perturbed matrix as a polynomial in λ with ε -dependent coefficients, e.g.,

$$p(\lambda,\varepsilon) = \lambda^4 + (2\varepsilon - \varepsilon^2)\lambda^3 + \varepsilon^2\lambda^2 + (\varepsilon - \varepsilon^3)\lambda + \varepsilon^2$$

Consider only the dominant terms

Step 1: each slope is a leading power in the Puiseux ε -expansion

three e-vals of $O(\varepsilon^{1/3})$, one e-val of $O(\varepsilon)$

Unstructured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44} \end{bmatrix} \in \mathbb{C}^{4 \times 4}$$

If
$$P^{-1}AP = J$$
, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & | & * \\ * & * & * & | & * \\ \frac{\Phi}{\Phi} & * & * & | & * \\ \hline * & * & * & | & * \end{bmatrix}, \text{ with } \Phi = y^H E x,$$

Unstructured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44} \end{bmatrix} \in \mathbb{C}^{4 \times 4}$$

If $P^{-1}AP = J$, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ \frac{\Phi}{+} & * & * & * & * \end{bmatrix}, \text{ with } \Phi = y^H E x,$$

Step 1: plot the points

Unstructured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44} \end{bmatrix} \in \mathbb{C}^{4 \times 4}$$

If $P^{-1}AP = J$, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & * \\ * & * & * & * \\ \frac{\Phi}{+} & * & * & * \end{bmatrix}, \text{ with } \Phi = y^H E x,$$

Step 2: draw lower boundary of convex hull

Unstructured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44} \end{bmatrix} \in \mathbb{C}^{4 \times 4}$$

If $P^{-1}AP = J$, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

Step 2: draw lower boundary of convex hull

Unstructured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} e_{11} & e_{12} & e_{13} & e_{14} \\ e_{21} & e_{22} & e_{23} & e_{24} \\ e_{31} & e_{32} & e_{33} & e_{34} \\ e_{41} & e_{42} & e_{43} & e_{44} \end{bmatrix} \in \mathbb{C}^{4 \times 4}$$

If $P^{-1}AP = J$, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & | &$$

The term in $\lambda \varepsilon$ is present only if $\Phi = y^H E x \neq 0$

Structured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} 0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0 \end{bmatrix} \in \mathbb{S}$$

If
$$P^{-1}AP = J$$
, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ \hline * & * & * & * & * \end{bmatrix}, \text{ since } \Phi = y^H E x = 0.$$

Structured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} 0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0 \end{bmatrix} \in \mathbb{S}$$

If $P^{-1}AP = J$, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ \hline * & * & * & * & * \end{bmatrix}, \text{ since } \Phi = y^H E x = 0.$$

Step 1: plot the points

Structured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon E, \qquad E = \begin{bmatrix} 0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0 \end{bmatrix} \in \mathbb{S}$$

If $P^{-1}AP = J$, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ \hline * & * & * & * & * \end{bmatrix}, \text{ since } \Phi = y^H E x = 0.$$

Step 2: draw lower boundary of convex hull

Structured perturbation

$$\begin{bmatrix} 0 & 1 & 0 & 1 \\ -1 & 0 & -i & 0 \\ 0 & i & 0 & i \\ -1 & 0 & -i & 0 \end{bmatrix} + \varepsilon \, E, \qquad E = \begin{bmatrix} 0 & e_{12} & e_{13} & e_{14} \\ -e_{12} & 0 & e_{23} & e_{24} \\ -e_{13} & -e_{23} & 0 & e_{34} \\ -e_{14} & -e_{24} & -e_{34} & 0 \end{bmatrix} \in \mathbb{S}$$

If
$$P^{-1}AP = J$$
, then $P^{-1}(A + \varepsilon E)P = J + \widetilde{E}$, where $J = J_3(0) \oplus J_1(0)$ and

$$\widetilde{E} = P^{-1}EP = \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ \hline * & * & * & * & * \end{bmatrix}, \text{ since } \Phi = y^H E x = 0.$$

Step 2: draw lower boundary of convex hull

Only slope $1/2 \Rightarrow n_1 = 2$

Same can be done in general for arbitrary fully nongeneric structure:

Bending point disappears from ND as soon as perturbations become fully nongeneric, i.e., when

$$Y^H E X = 0$$
 for all $E \in \mathbb{S}$.

Same can be done in general for arbitrary fully nongeneric structure:

- For perturbations in S, identify most likely points to lie on lowest segment in the ND
- Depend on sizes n_1 , n_2 and numbers r_1 , r_2 of λ_0 -Jordan blocks. Possibly, also on the structure $\mathbb S$

Same can be done in general for arbitrary fully nongeneric structure:

Finally, determine the reciprocal

$$n_{\mathbb{S}} < n_1$$

of the lowest possible slope

Same can be done in general for arbitrary fully nongeneric structure:

Finally, determine the reciprocal

$$n_{\mathbb{S}} < n_1$$

of the lowest possible slope

In this way, explicit formulas can be found for n_s , depending on the quantities n_1, n_2, r_1, r_2

- Entry-wise information on the structure is important, to assess which
 points are present on the grid when the perturbations are structured.
- Otherwise, the formulas give just upper bounds on n_S

 Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.

- Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.
- So far, not many significant differences between structured and unstructured condition number for generic structures except for a small number of special cases

Main tools: structured canonical forms + mapping theorems

- Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.
- So far, not many significant differences between structured and unstructured condition number for generic structures except for a small number of special cases

Main tools: structured canonical forms + mapping theorems

 First component n_S of structured condition number can be obtained for fully nongeneric structures

Main tool: Newton diagram.

- Structured and unstructured condition numbers for multiple eigenvalues can be defined and compared for several classes of structured matrices.
- So far, not many significant differences between structured and unstructured condition number for generic structures except for a small number of special cases

Main tools: structured canonical forms + mapping theorems

 First component n_S of structured condition number can be obtained for fully nongeneric structures

Main tool: Newton diagram.

Still several relevant classes to be explored (e.g., zero structures).

