
Decay properties of matrix power series

Decay properties of certain matrix power series
encountered in stochastic processes

Beatrice Meini
joint work with D. Bini and V. Ramaswami

Structured Linear Algebra Problems: Analysis, Algorithms, and
Applications

Cortona, September 15–19, 2008



Decay properties of matrix power series

Outline

The problem

Decay estimate
Idea
The scalar case
The general case

Computational issues
Algorithms
Numerical experiments



Decay properties of matrix power series

The problem

The problem

I Let An, for n ≥ −1, be k × k nonnegative matrices such that∑∞
n=−1 An is stochastic;

I For 0 ≤ w ≤ 1, let G (w) be the minimal nonnegative solution
to the matrix equation

X = w
∞∑

n=−1

AnX
n+1

i.e., for any solution X (w) ≥ 0, one has G (w) ≤ X (w).

Our goal: To analyze “decay properties” of G (w) (more details
will follow in the next slides)



Decay properties of matrix power series

The problem

The problem

I Let An, for n ≥ −1, be k × k nonnegative matrices such that∑∞
n=−1 An is stochastic;

I For 0 ≤ w ≤ 1, let G (w) be the minimal nonnegative solution
to the matrix equation

X = w
∞∑

n=−1

AnX
n+1

i.e., for any solution X (w) ≥ 0, one has G (w) ≤ X (w).

Our goal: To analyze “decay properties” of G (w) (more details
will follow in the next slides)



Decay properties of matrix power series

The problem

The problem

I Let An, for n ≥ −1, be k × k nonnegative matrices such that∑∞
n=−1 An is stochastic;

I For 0 ≤ w ≤ 1, let G (w) be the minimal nonnegative solution
to the matrix equation

X = w
∞∑

n=−1

AnX
n+1

i.e., for any solution X (w) ≥ 0, one has G (w) ≤ X (w).

Our goal: To analyze “decay properties” of G (w) (more details
will follow in the next slides)



Decay properties of matrix power series

The problem

Motivation

Consider a Markov Renewal Process (MRP) of M/G/1-type with
levels `0, `1, `2, . . ., defined by the kernel

K (x) =



B̃0(x) B̃1(x) B̃2(x) B̃3(x) . . .

Ã−1(x) Ã0(x) Ã1(x) Ã2(x) . . .

Ã−1(x) Ã0(x) Ã1(x)
. . .

Ã−1(x) Ã0(x)
. . .

0
. . .

. . .


, x ≥ 0,

where

Ãk(x) = P{Xn+1 ∈ `i+k , τn+1 − τn ≤ x | X0, . . . ,Xn,
τ0, . . . , τn,Xn ∈ `i},

B̃k(x) = P{Xn+1 ∈ `k , τn+1 − τn ≤ x | X0, . . . ,Xn,
τ0, . . . , τn,Xn ∈ `0}
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The problem

Motivation

Let

G̃ (n, x) = P{in n steps and in time ≤ x the system goes
from level `1 to level `0}

Question: How fast does G̃ (n, x) go to zero, as n →∞?

Idea: Through Laplace-Stiltjes transforms reduce the MRP to an
M/G/1-type Markov chain



Decay properties of matrix power series

The problem

Motivation

The M/G/1-type Markov chain is defined by the transition
probability matrix

B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0
. . .

. . .


.

Let Gn = P{in n steps we go from level `1to level `0}
Question: How fast does Gn go to zero, as n →∞?
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The problem

Back to G (w)

Recall that G (w) solves

X = w
∞∑

n=−1

AnX
n+1.

Known facts:

1. G (w) is analytic |w | < 1, convergent for |w | = 1

2. G (w) =
∑∞

n=0 wnGn

3. Gn ≥ 0 for any n ≥ 0, and Gn is the sought probability.

Problem: Can we find θ such that ‖Gn‖ = O(θn) as n →∞?
Assumptions:

I
∑∞

i=−1 Ai is irreducible;

I the convergence radius of A(z) =
∑∞

i=−1 z i+1Ai is ra > 1.
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Decay estimate

Idea

Idea

To apply to G (w) the:

Theorem (Cauchy estimate)

Let R be the convergence radius of the series f (w) =
∑∞

j=0 w j fj .
Then, for any 0 < r < R and for any j ≥ 0 one has

|fj | ≤
µ(r)

r j

where µ(r) = sup|w |=r |f (w)|.

Problem: to determine the convergence radius of G (w)
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Decay estimate

Idea

A scalar example: Poisson distribution

Let λ > 0 and

Ai = e−λ λi+1

(i + 1)!
, i ≥ −1.

One has

G (w) =
∞∑

n=1

wne−n(λ−1)λn−1

The convergence radius is R = (λe−(λ−1))−1



Decay properties of matrix power series

Decay estimate

Idea

Convergence radius R in function of λ
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How can we estimate R without knowing G (w)?
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Decay estimate

The scalar case

Scalar case

Let Ai be scalar numbers, and A(z) =
∑∞

i=−1 z i+1Ai . We look for
conditions on w so that the equation z = wA(z) has a solution in
(0, ra).

The following properties hold:

I Since Ai ≥ 0, the function A(z) is convex and increasing in
(0, ra);

I the function fw (z) = wA(z)− z has a minimum in σ ∈ (0, ra),
where σ solves the equation wA′(σ)− 1 = 0;

I the equation z = wA(z) has a solution in (0, ra) if fw (σ) ≤ 0.

The convergence radius R is the superior extremum of the w ∈
(0, ra) such that z = wA(z) has a solution in (0, ra)
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Decay estimate

The scalar case

Scalar case

Here R = 1.06
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Decay estimate

The scalar case

Convergence radius in the scalar case

The convergence radius of G (w) is

R =
1

A′(σ)

where σ ∈ (0, ra) solves the equation

A′(z)z = A(z)

Can we extend these properties to the block case?
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Decay estimate

The general case

General case

Let µw and uw be the Perron eigenvalue/eigenvector of G (w).

From

G (w)uw = w
∞∑

i=−1

AiG (w)i+1uw

one has

µwuw = w

( ∞∑
i=−1

Aiµ
i+1
w

)
uw .

Therefore, µw solves the scalar equation

z = wρ(A(z)). (1)

Intuition: the convergence radius is the superior extremum of the
w ∈ (0, ra) such that (1) has a solution
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Decay estimate

The general case

Some properties

Let θ(z) be the spectral radius of A(z) =
∑∞

i=−1 z i+1Ai .

The following properties hold [Gail,Hantler,Taylor 95]:

I θ(z) is a real analytic function in (0, ra);

I θ(z) is strictly increasing in (0, ra);

I the function log θ(et) is convex and increasing in (−∞, log ra).
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Decay estimate

The general case

Main result

Theorem
Let θ(z) = ρ(A(z)). The following properties hold:

1. the equation
θ′(z)z = θ(z)

has a unique solution σ in (0, ra);

2. the equation z = wθ(z) has a solution in (0, ra) for any
0 < w ≤ 1/θ′(σ);

3. the convergence radius of G (w) is R = 1/θ′(σ) = σ/θ(σ).
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Computational issues

Algorithms

Fixed point iteration

Goal: Compute the solution σ ∈ (0, ra) of z = θ(z)
θ′(z) .

Set, say, z0 = 1 and compute

zk+1 =
θ(zk)

θ′(zk)
, k ≥ 0.

At the k-th step we need:

I θ(zk) = ρ(A(zk)) (easy to compute);

I θ′(zk)?
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Computational issues

Algorithms

Computation of θ′(z)

1. There exist vectors u(z) and v(z), analytic for 0 < z < ra,
such that

u(z)TA(z) = θ(z)u(z)T , A(z)v(z) = θ(z)v(z)

2. Taking derivative in A(z)v(z) = θ(z)v(z) and multiplying the
result on the left by u(z)T , yields

θ′(z) =
u(z)TA′(z)v(z)

u(z)Tv(z)
.



Decay properties of matrix power series

Computational issues

Algorithms

Computation of θ′(z)
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Computational issues

Algorithms

Newton’s method

Newton’s method applied to the function g(z) = θ(z)− zθ′(z),
yields the sequence

zk+1 = zk +
θ(zk)− zkθ′(zk)

zkθ′′(zk)
, k ≥ 0,

starting, say, from z0 = 1.

How compute θ′′(zk)?
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Computational issues

Algorithms

Computation of θ′′(z)

Differentiate twice A(z)v(z) = θ(z)v(z), and multiply the result on
the left by u(z)T .
We get

θ′′(z) =
u(z)T (A′′(z)v(z) + 2A′(z)v′(z)− 2θ′(z)v′(z))

u(z)Tv(z)
,

where v′(z) solves the singular system

(A(z)− θ(z)I )v′(z) = −(A′(z)− θ′(z))v(z).
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Computational issues

Algorithms

Convergence

I We expect a local linear convergence for the fixed point
iteration, and a local quadratic convergence for Newton’s
method.

I A detailed convergence analysis seems difficult to be
performed.

I Experimentally, we observed that the convergence of the fixed
point iteration obtained starting with z0 = 1 is monotonic.
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Computational issues

Numerical experiments

Numerical experiments

Consider the case

A−1 =

[
0 p
0 0

]
, A0 =

[
0.8− p 0

1 0

]
, A1 =

[
0 0.2
0 0

]
,

and Ai = 0 for i > 1, with 0 < p < 0.8. This problem is positive
recurrent if p > 0.2, and null recurrent if p = 0.2.

We implemented the algorithms in Matlab, and considered the
cases obtained with p = 0.1 · k, k = 1, 2, . . . , 7.

The iterations have been halted if |zk+1 − zk | < 10−10.
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Computational issues

Numerical experiments

Numerical results

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Newton 5 1 5 5 6 6 6

F.P.I. 81 1 52 47 43 39 36

R 1.0135 1 1.0068 1.0222 1.0424 1.0657 1.0911

Table: Number of iterations and value of the radius R
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Computational issues

Numerical experiments

Further developments

I Convergence analysis of the algorithms

I Design of algorithms for computing an arbitrary number of
matrices Gn

I Probabilistic interpretation of the formula R = 1/θ′(σ).
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