Decay properties of certain matrix power series encountered in stochastic processes

Beatrice Meini joint work with D. Bini and V. Ramaswami

Structured Linear Algebra Problems: Analysis, Algorithms, and Applications Cortona, September 15–19, 2008

Outline

The problem

Decay estimate Idea The scalar case The general case

Computational issues

Algorithms Numerical experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The problem

The problem

▶ Let A_n , for $n \ge -1$, be $k \times k$ nonnegative matrices such that $\sum_{n=-1}^{\infty} A_n$ is stochastic;

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The problem

The problem

- Let A_n , for $n \ge -1$, be $k \times k$ nonnegative matrices such that $\sum_{n=-1}^{\infty} A_n$ is stochastic;
- For 0 ≤ w ≤ 1, let G(w) be the minimal nonnegative solution to the matrix equation

$$X = w \sum_{n=-1}^{\infty} A_n X^{n+1}$$

i.e., for any solution $X(w) \ge 0$, one has $G(w) \le X(w)$.

The problem

The problem

- Let A_n , for $n \ge -1$, be $k \times k$ nonnegative matrices such that $\sum_{n=-1}^{\infty} A_n$ is stochastic;
- For 0 ≤ w ≤ 1, let G(w) be the minimal nonnegative solution to the matrix equation

$$X = w \sum_{n=-1}^{\infty} A_n X^{n+1}$$

i.e., for any solution $X(w) \ge 0$, one has $G(w) \le X(w)$.

Our goal: To analyze "decay properties" of G(w) (more details will follow in the next slides)

The problem

Motivation

Consider a Markov Renewal Process (MRP) of M/G/1-type with levels $\ell_0, \ell_1, \ell_2, \ldots$, defined by the kernel

$$X(x) = \begin{bmatrix} \widetilde{B}_0(x) & \widetilde{B}_1(x) & \widetilde{B}_2(x) & \widetilde{B}_3(x) & \dots \\ \widetilde{A}_{-1}(x) & \widetilde{A}_0(x) & \widetilde{A}_1(x) & \widetilde{A}_2(x) & \dots \\ & \widetilde{A}_{-1}(x) & \widetilde{A}_0(x) & \widetilde{A}_1(x) & \ddots \\ & & \widetilde{A}_{-1}(x) & \widetilde{A}_0(x) & \ddots \\ & & & \ddots & \ddots \end{bmatrix}, \quad x \ge 0,$$

where

k

$$\begin{split} \widetilde{A}_k(x) &= P\{X_{n+1} \in \ell_{i+k}, \ \tau_{n+1} - \tau_n \leq x | \quad X_0, \dots, X_n, \\ \widetilde{B}_k(x) &= P\{X_{n+1} \in \ell_k, \ \tau_{n+1} - \tau_n \leq x | \quad \begin{array}{c} \tau_0, \dots, \tau_n, X_n \in \ell_i\}, \\ X_0, \dots, X_n, \\ \tau_0, \dots, \tau_n, X_n \in \ell_0\} \end{split}$$

- The problem

Motivation

Let

$$\widetilde{G}(n,x) = P\{$$
in *n* steps and in time $\leq x$ the system goes from level ℓ_1 to level $\ell_0\}$

Question: How fast does $\widetilde{G}(n, x)$ go to zero, as $n \to \infty$?

Idea: Through Laplace-Stiltjes transforms reduce the MRP to an $M/G/1\mbox{-type}$ Markov chain

・ロト・4日・4日・4日・4日・4日・900

The problem

Motivation

The M/G/1-type Markov chain is defined by the transition probability matrix

$$\begin{bmatrix} B_0 & B_1 & B_2 & B_3 & \dots \\ A_{-1} & A_0 & A_1 & A_2 & \dots \\ & A_{-1} & A_0 & A_1 & \ddots \\ & & A_{-1} & A_0 & \ddots \\ 0 & & \ddots & \ddots \end{bmatrix}.$$

Let $G_n = P\{$ in *n* steps we go from level ℓ_1 to level $\ell_0\}$ Question: How fast does G_n go to zero, as $n \to \infty$?

- The problem

Back to G(w)

Recall that G(w) solves

$$X = w \sum_{n=-1}^{\infty} A_n X^{n+1}$$

Known facts:

- 1. G(w) is analytic |w| < 1, convergent for |w| = 1
- 2. $G(w) = \sum_{n=0}^{\infty} w^n G_n$
- 3. $G_n \ge 0$ for any $n \ge 0$, and G_n is the sought probability.

- The problem

Back to G(w)

Recall that G(w) solves

$$X = w \sum_{n=-1}^{\infty} A_n X^{n+1}$$

Known facts:

1. G(w) is analytic |w| < 1, convergent for |w| = 1

2.
$$G(w) = \sum_{n=0}^{\infty} w^n G_n$$

3. $G_n \ge 0$ for any $n \ge 0$, and G_n is the sought probability.

Problem: Can we find θ such that $||G_n|| = O(\theta^n)$ as $n \to \infty$?

The problem

Back to G(w)

Recall that G(w) solves

$$X = w \sum_{n=-1}^{\infty} A_n X^{n+1}.$$

Known facts:

1. G(w) is analytic |w| < 1, convergent for |w| = 1

2.
$$G(w) = \sum_{n=0}^{\infty} w^n G_n$$

3. $G_n \ge 0$ for any $n \ge 0$, and G_n is the sought probability.

Problem: Can we find θ such that $||G_n|| = O(\theta^n)$ as $n \to \infty$? Assumptions:

- $\sum_{i=-1}^{\infty} A_i$ is irreducible;
- ► the convergence radius of $A(z) = \sum_{i=-1}^{\infty} z^{i+1}A_i$ is $r_a > 1$.

Decay properties of r	matrix power series
Decay estimate	
L Idea	

Idea

To apply to G(w) the:

Theorem (Cauchy estimate)

Let *R* be the convergence radius of the series $f(w) = \sum_{j=0}^{\infty} w^j f_j$. Then, for any 0 < r < R and for any $j \ge 0$ one has

$$|f_j| \leq \frac{\mu(r)}{r^j}$$

where $\mu(r) = \sup_{|w|=r} |f(w)|$.

Problem: to determine the convergence radius of G(w)

A scalar example: Poisson distribution

Let $\lambda > 0$ and

$$A_i=e^{-\lambda}rac{\lambda^{i+1}}{(i+1)!},\quad i\geq -1.$$

One has

$$G(w) = \sum_{n=1}^{\infty} w^n e^{-n(\lambda-1)} \lambda^{n-1}$$

The convergence radius is $R = (\lambda e^{-(\lambda-1)})^{-1}$

Convergence radius R in function of λ

How can we estimate R without knowing G(w)?

・ロト ・ 日 ・ モ ・ ・ 日 ・ ・ つ へ つ ・

Let A_i be scalar numbers, and $A(z) = \sum_{i=-1}^{\infty} z^{i+1}A_i$. We look for conditions on w so that the equation z = wA(z) has a solution in $(0, r_a)$.

The following properties hold:

Since A_i ≥ 0, the function A(z) is convex and increasing in (0, r_a);

Let A_i be scalar numbers, and $A(z) = \sum_{i=-1}^{\infty} z^{i+1}A_i$. We look for conditions on w so that the equation z = wA(z) has a solution in $(0, r_a)$.

The following properties hold:

- Since A_i ≥ 0, the function A(z) is convex and increasing in (0, r_a);
- ▶ the function $f_w(z) = wA(z) z$ has a minimum in $\sigma \in (0, r_a)$, where σ solves the equation $wA'(\sigma) 1 = 0$;

Let A_i be scalar numbers, and $A(z) = \sum_{i=-1}^{\infty} z^{i+1}A_i$. We look for conditions on w so that the equation z = wA(z) has a solution in $(0, r_a)$.

The following properties hold:

- Since A_i ≥ 0, the function A(z) is convex and increasing in (0, r_a);
- ▶ the function $f_w(z) = wA(z) z$ has a minimum in $\sigma \in (0, r_a)$, where σ solves the equation $wA'(\sigma) 1 = 0$;

• the equation z = wA(z) has a solution in $(0, r_a)$ if $f_w(\sigma) \le 0$.

Let A_i be scalar numbers, and $A(z) = \sum_{i=-1}^{\infty} z^{i+1}A_i$. We look for conditions on w so that the equation z = wA(z) has a solution in $(0, r_a)$.

The following properties hold:

- Since A_i ≥ 0, the function A(z) is convex and increasing in (0, r_a);
- ▶ the function $f_w(z) = wA(z) z$ has a minimum in $\sigma \in (0, r_a)$, where σ solves the equation $wA'(\sigma) 1 = 0$;
- the equation z = wA(z) has a solution in $(0, r_a)$ if $f_w(\sigma) \le 0$.

The convergence radius R is the superior extremum of the $w \in (0, r_a)$ such that z = wA(z) has a solution in $(0, r_a)$

ITÀ DI PISA

- Decay estimate

└─ The scalar case

Scalar case

Here R = 1.06

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

└─ The scalar case

Convergence radius in the scalar case

The convergence radius of G(w) is

$$R = \frac{1}{A'(\sigma)}$$

where $\sigma \in (0, r_a)$ solves the equation

A'(z)z = A(z)

└─ The scalar case

Convergence radius in the scalar case

The convergence radius of G(w) is

$$R = rac{1}{A'(\sigma)}$$

where $\sigma \in (0, r_a)$ solves the equation

A'(z)z = A(z)

Can we extend these properties to the block case?

- Decay estimate

└─ The general case

General case

Let μ_w and \mathbf{u}_w be the Perron eigenvalue/eigenvector of G(w).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

└─ The general case

General case

Let μ_w and \mathbf{u}_w be the Perron eigenvalue/eigenvector of G(w). From

$$G(w)\mathbf{u}_w = w \sum_{i=-1}^{\infty} A_i G(w)^{i+1} \mathbf{u}_w$$

$$\mu_{w}\mathbf{u}_{w} = w\left(\sum_{i=-1}^{\infty} A_{i}\mu_{w}^{i+1}\right)\mathbf{u}_{w}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

└─ The general case

General case

Let μ_w and \mathbf{u}_w be the Perron eigenvalue/eigenvector of G(w). From

$$G(w)\mathbf{u}_w = w \sum_{i=-1}^{\infty} A_i G(w)^{i+1} \mathbf{u}_w$$

one has

$$\mu_{w}\mathbf{u}_{w} = w\left(\sum_{i=-1}^{\infty} A_{i}\mu_{w}^{i+1}\right)\mathbf{u}_{w}.$$

Therefore, μ_w solves the scalar equation

$$z = w \rho(A(z)).$$

(1)

UNIVERSITÀ DI PISA

Intuition: the convergence radius is the superior extremum of the $w \in (0, r_a)$ such that (1) has a solution

Some properties

Let $\theta(z)$ be the spectral radius of $A(z) = \sum_{i=-1}^{\infty} z^{i+1}A_i$.

The following properties hold [Gail,Hantler,Taylor 95]:

- $\theta(z)$ is a real analytic function in $(0, r_a)$;
- $\theta(z)$ is strictly increasing in $(0, r_a)$;
- ▶ the function $\log \theta(e^t)$ is convex and increasing in $(-\infty, \log r_a)$.

- Decay estimate

└─ The general case

Main result

Theorem Let $\theta(z) = \rho(A(z))$. The following properties hold:

1. the equation

 $\theta'(z)z = \theta(z)$

has a unique solution σ in $(0, r_a)$;

- Decay estimate

└─ The general case

Main result

Theorem Let $\theta(z) = \rho(A(z))$. The following properties hold:

1. the equation

 $\theta'(z)z = \theta(z)$

has a unique solution σ in $(0, r_a)$;

2. the equation $z = w\theta(z)$ has a solution in $(0, r_a)$ for any $0 < w \le 1/\theta'(\sigma)$;

- Decay estimate

└─ The general case

Main result

Theorem Let $\theta(z) = \rho(A(z))$. The following properties hold:

1. the equation

$$\theta'(z)z = \theta(z)$$

has a unique solution σ in $(0, r_a)$;

- 2. the equation $z = w\theta(z)$ has a solution in $(0, r_a)$ for any $0 < w \le 1/\theta'(\sigma)$;
- 3. the convergence radius of G(w) is $R = 1/\theta'(\sigma) = \sigma/\theta(\sigma)$.

- Computational issues

- Algorithms

Fixed point iteration

Goal: Compute the solution $\sigma \in (0, r_a)$ of $z = \frac{\theta(z)}{\theta'(z)}$.

Set, say, $z_0 = 1$ and compute

$$z_{k+1}=rac{ heta(z_k)}{ heta'(z_k)}, \quad k\geq 0.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Algorithms

Fixed point iteration

Goal: Compute the solution $\sigma \in (0, r_a)$ of $z = \frac{\theta(z)}{\theta'(z)}$.

Set, say, $z_0 = 1$ and compute

$$z_{k+1}=rac{ heta(z_k)}{ heta'(z_k)}, \quad k\geq 0.$$

At the *k*-th step we need:

•
$$\theta(z_k) = \rho(A(z_k))$$
 (easy to compute);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ - のへで

Algorithms

Fixed point iteration

Goal: Compute the solution $\sigma \in (0, r_a)$ of $z = \frac{\theta(z)}{\theta'(z)}$.

Set, say, $z_0 = 1$ and compute

$$z_{k+1}=rac{ heta(z_k)}{ heta'(z_k)}, \quad k\geq 0.$$

At the *k*-th step we need:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- Computational issues

Algorithms

Computation of $\theta'(z)$

1. There exist vectors $\mathbf{u}(z)$ and $\mathbf{v}(z)$, analytic for $0 < z < r_a$, such that

$$\mathbf{u}(z)^T A(z) = \theta(z) \mathbf{u}(z)^T, \quad A(z) \mathbf{v}(z) = \theta(z) \mathbf{v}(z)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Computational issues

- Algorithms

Computation of $\theta'(z)$

1. There exist vectors $\mathbf{u}(z)$ and $\mathbf{v}(z)$, analytic for $0 < z < r_a$, such that

$$\mathbf{u}(z)^T A(z) = \theta(z) \mathbf{u}(z)^T, \quad A(z) \mathbf{v}(z) = \theta(z) \mathbf{v}(z)$$

2. Taking derivative in $A(z)\mathbf{v}(z) = \theta(z)\mathbf{v}(z)$ and multiplying the result on the left by $\mathbf{u}(z)^T$, yields

$$heta'(z) = rac{\mathsf{u}(z)^{\mathsf{T}} \mathsf{A}'(z) \mathsf{v}(z)}{\mathsf{u}(z)^{\mathsf{T}} \mathsf{v}(z)}.$$

- Computational issues

- Algorithms

Newton's method

Newton's method applied to the function $g(z) = \theta(z) - z\theta'(z)$, yields the sequence

$$z_{k+1}=z_k+rac{ heta(z_k)-z_k heta'(z_k)}{z_k heta''(z_k)}, \ \ k\geq 0,$$

starting, say, from $z_0 = 1$.

How compute $\theta''(z_k)$?

- Computational issues

- Algorithms

Computation of $\theta''(z)$

Differentiate twice $A(z)\mathbf{v}(z) = \theta(z)\mathbf{v}(z)$, and multiply the result on the left by $\mathbf{u}(z)^T$. We get

$$\theta''(z) = \frac{\mathsf{u}(z)^{\mathsf{T}} \left(A''(z) \mathsf{v}(z) + 2A'(z) \mathsf{v}'(z) - 2\theta'(z) \mathsf{v}'(z) \right)}{\mathsf{u}(z)^{\mathsf{T}} \mathsf{v}(z)},$$

where $\mathbf{v}'(z)$ solves the singular system

$$(A(z) - \theta(z)I)\mathbf{v}'(z) = -(A'(z) - \theta'(z))\mathbf{v}(z).$$

Convergence

- We expect a local linear convergence for the fixed point iteration, and a local quadratic convergence for Newton's method.
- A detailed convergence analysis seems difficult to be performed.
- Experimentally, we observed that the convergence of the fixed point iteration obtained starting with z₀ = 1 is monotonic.

-Computational issues

-Numerical experiments

Numerical experiments

Consider the case

$$A_{-1} = \begin{bmatrix} 0 & p \\ 0 & 0 \end{bmatrix}, \quad A_0 = \begin{bmatrix} 0.8 - p & 0 \\ 1 & 0 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0 & 0.2 \\ 0 & 0 \end{bmatrix},$$

and $A_i = 0$ for i > 1, with 0 . This problem is positive recurrent if <math>p > 0.2, and null recurrent if p = 0.2.

We implemented the algorithms in Matlab, and considered the cases obtained with $p = 0.1 \cdot k$, k = 1, 2, ..., 7.

The iterations have been halted if $|z_{k+1} - z_k| < 10^{-10}$.

- Computational issues

-Numerical experiments

Numerical results

р	0.1	0.2	0.3	0.4	0.5	0.6	0.7
Newton	5	1	5	5	6	6	6
F.P.I.	81	1	52	47	43	39	36
R	1.0135	1	1.0068	1.0222	1.0424	1.0657	1.0911

Table: Number of iterations and value of the radius R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

-Computational issues

-Numerical experiments

Further developments

- Convergence analysis of the algorithms
- Design of algorithms for computing an arbitrary number of matrices G_n
- Probabilistic interpretation of the formula $R = 1/\theta'(\sigma)$.

