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Vibrating systems

L(λ) = Mλ2 + Dλ + K ,

M∗ = M > 0, D∗ = D, K ∗ = K .

σ(L) = {eigenvalues of L}, (the spectrum). Assume no multiple ev.

We know a real ev λ0 6= 0 and associated evector x0 (possibly complex),
i.e. L(λ0)x0 = 0.

This real ev is to be “updated”, λ0 → λ1:

(a) Retaining symmetry of M, D, K and
(b) Without “spill-over”.
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The algorithm for one real ev.

Using data λ0, x0, compute the real number

x∗0Dx0 + 2λ0(x
∗
0Mx0) := εκ2 (1)

where ε = ±1 and κ > 0.

ε is just the sign of this real number,
κ2 is its absolute value.

Normalized data for this ev/evector pair is now:

λ0, x = x0/κ, ε, (2)

and ε is the sign characteristic of the ev λ.
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The algorithm for one real ev.

Form the n × n matrices of rank one:

S = ελ0xx
∗, T = ελ2

0xx
∗, U = ελ3

0xx
∗. (3)

For update: λ0 → λ1,

form
Ŝ = ελ1xx

∗, T̂ = ελ2
1xx

∗, Û = ελ3
1xx

∗, (4)

(and note that the sign characteristic is preserved).

Constrain Ŝ also so that M−1 + (Ŝ − S) > 0.
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Updated coefficients

Then the updated mass matrix M̂ is given by

M̂−1 = M−1 + (Ŝ − S). (5)

The other updated coefficients:

D̂ = M̂
[
M−1DM−1 − (T̂ − T )

]
M̂, (6)

K̂ = −M̂
[
M−1(DM−1D − K )M−1 + (Û − U)

]
M̂ + D̂M̂−1D̂. (7)
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Updating a conjugate pair

Given ev’s µ, µ̄ with evectors v0 and w0.

Calculate the (generally complex) number

k = w∗
0 Dv0 + 2µw∗

0 Mv0. (8)

Let κ be one of the square roots of k and form the normalized data:

ev µ with evector v = v0/κ,

ev µ̄ with evector w = w0/κ̄. (9)
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Updating a conjugate pair

Define matrices S , T , U of rank two:

S =
[

v w
] [

0 µ
µ̄ 0

] [
v w

]∗
, (10)

T =
[

v w
] [

0 µ
µ̄ 0

]2 [
v w

]∗
, (11)

U =
[

v w
] [

0 µ
µ̄ 0

]3 [
v w

]∗
. (12)
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Updating a conjugate pair

For updated data µ → µ̂, µ̄ → µ̂,

form updated matrices Ŝ , T̂ , Û:

Ŝ =
[

v w
] [

0 µ̂

µ̂ 0

] [
v w

]∗
,

T̂ =
[

v w
] [

0 µ̂
ˆ̄µ 0

]2 [
v w

]∗
, (13)

Û =
[

v w
] [

0 µ̂
ˆ̄µ 0

]3 [
v w

]∗
.

Constrain Ŝ also so that M−1 + (Ŝ − S) > 0.
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Conjugate pair

As before:
M̂−1 = M−1 + (Ŝ − S).

D̂ = M̂
[
M−1DM−1 − (T̂ − T )

]
M̂,

K̂ = −M̂
[
M−1(DM−1D − K )M−1 + (Û − U)

]
M̂ + D̂M̂−1D̂.
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A general theory

J =


Jc 0 0 0
0 U2 0 0
0 0 U3 0
0 0 0 J̄c

 =


U1 + iW 0 0 0

0 U2 0 0
0 0 U3 0
0 0 0 U1 − iW

 .

X =
[

Xc1 XR1 XR2 Xc2

]
,
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A general theory

(X , J) form a Jordan pair for L(λ) and, necessarily,

det

[
X
XJ

]
6= 0.

Define

P :=


0 0 0 In−r

0 Ir 0 0
0 0 −Ir 0

In−r 0 0 0

 ,

(taking care of the sign characteristics).

N.B. P∗ = P and (PJ)∗ = PJ.
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A general theory

There is an X (see above) such that

XPX ∗ = 0, X (JP)X ∗ = M−1 > 0 (14)

The moments of the system are

Γj = X (J jP)X ∗,

for all integers j for which J j is defined.

Coefficents of L(λ) are determined by moments (and hence X , J, P):

M = Γ−1
1 , D = −MΓ2M, K = −MΓ3M + DΓ1D.

(First techniques are consequences of this.)
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The scalar case

Example n = 1 and L(λ) = mλ2 + bλ + c , m > 0

(a) Real zeros λ1, λ2 with λ1 > λ2,

X =
[

1 1
]
, J =

[
λ1 0
0 λ2

]
, P =

[
1 0
0 −1

]
.

(b) Non-real zeros µ± i(λ1 − λ2)/2 with λ1 > λ2,

X =
ˆ

e iπ/4 e−iπ/4
˜
, J =

"
µ + i λ1−λ2

2
0

0 µ− i λ1−λ2
2

#
, P =

»
0 1
1 0

–
.

In both cases, m−1 = XJPX ∗ = λ1 − λ2. Smooth transition from real to
non-real eigenvalues, or vice versa, will generally induce singularities in the
coefficients.
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A general theory

Strategy for model updating

Given a system with Hermitian coefficients M, D, K and M > 0,
compute the canonical matrices X , P, J above.

Make the updates in X and J to produce X̂ , Ĵ in such a way that:
(a) P will not be disturbed, and
(b) X̂PX̂ ∗ = 0, and X̂ (ĴP)X̂ ∗ > 0.

Compute the moments defined by X̂ , P, Ĵ, and hence new
coefficients M̂, D̂, K̂ .

Can perturb ev alone, or evectors alone, or both together.
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coefficients M̂, D̂, K̂ .

Can perturb ev alone, or evectors alone, or both together.

Peter Lancaster () Updating Cortona, September 2008. 14 / 18



A general theory

Strategy for model updating

Given a system with Hermitian coefficients M, D, K and M > 0,
compute the canonical matrices X , P, J above.

Make the updates in X and J to produce X̂ , Ĵ in such a way that:
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Difficulty: ensuring that XPX ∗ = 0 holds after updating.

But, this problem does not arise if the evector matrix, X , is not to be
changed (X̂ = X ), and adjustments are made to the ev only.

In particular: It is not possible to update one evector and retain the
symmetry/no-spill-over properties.
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M =

[
1 0
0 1

]
, D =

[
2 0
0 3

]
, K =

[
5 2
2 2

]
.

J =

2664
−1.0656 + i(2.1742) 0 0 0

0 −0.4175 0 0
0 0 −2.4513 0
0 0 0 −1.0656− i(2.1742)

3775 ,

P =

2664
0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

3775 .

Normalised evectors:

X =

»
−0.3021 + i(0.3333) 0.2967 −i(0.2201) −0.3021− i(0.3333)
−0.1567 + i(0.0774) −0.6438 i(0.6721) −0.1567− i(0.0774)

–
.

Updated spectrum: −4± 4i , −1, −4.
Updated system:

M̂ =

»
0.5334 −0.118

0.6959

–
, D̂ =

»
3.8308 0.8350

4.0086

–
, K̂ =

»
14.8328 6.1635

5.7632

–
.
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Time to go!
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