UPDATING EIGENVALUES OF VIBRATING SYSTEMS

Peter Lancaster, University of Calgary

Cortona, September 2008.

Vibrating systems

$$
L(\lambda)=M \lambda^{2}+D \lambda+K,
$$

$$
M^{*}=M>0, D^{*}=D, K^{*}=K .
$$

Vibrating systems

$$
L(\lambda)=M \lambda^{2}+D \lambda+K
$$

$$
M^{*}=M>0, D^{*}=D, K^{*}=K
$$

$\sigma(L)=\{$ eigenvalues of $L\}$,
(the spectrum). Assume no multiple ev.

Vibrating systems

$$
L(\lambda)=M \lambda^{2}+D \lambda+K
$$

$M^{*}=M>0, D^{*}=D, K^{*}=K$.
$\sigma(L)=\{$ eigenvalues of $L\}, \quad$ (the spectrum). Assume no multiple ev.
We know a real ev $\lambda_{0} \neq 0$ and associated evector x_{0} (possibly complex), i.e. $L\left(\lambda_{0}\right) x_{0}=0$.

Vibrating systems

$$
L(\lambda)=M \lambda^{2}+D \lambda+K,
$$

$M^{*}=M>0, D^{*}=D, K^{*}=K$.
$\sigma(L)=\{$ eigenvalues of $L\}, \quad$ (the spectrum). Assume no multiple ev.
We know a real ev $\lambda_{0} \neq 0$ and associated evector x_{0} (possibly complex), i.e. $L\left(\lambda_{0}\right) x_{0}=0$.

This real ev is to be "updated", $\lambda_{0} \rightarrow \lambda_{1}$:
(a) Retaining symmetry of M, D, K and
(b) Without "spill-over".

The algorithm for one real ev.

Using data λ_{0}, x_{0}, compute the real number

$$
\begin{equation*}
x_{0}^{*} D x_{0}+2 \lambda_{0}\left(x_{0}^{*} M x_{0}\right):=\varepsilon \kappa^{2} \tag{1}
\end{equation*}
$$

where $\varepsilon= \pm 1$ and $\kappa>0$.

The algorithm for one real ev.

Using data λ_{0}, x_{0}, compute the real number

$$
\begin{equation*}
x_{0}^{*} D x_{0}+2 \lambda_{0}\left(x_{0}^{*} M x_{0}\right):=\varepsilon \kappa^{2} \tag{1}
\end{equation*}
$$

where $\varepsilon= \pm 1$ and $\kappa>0$.
ε is just the sign of this real number, κ^{2} is its absolute value.

Normalized data for this ev/evector pair is now:

$$
\begin{equation*}
\lambda_{0}, \quad x=x_{0} / \kappa, \quad \varepsilon, \tag{2}
\end{equation*}
$$

and ε is the sign characteristic of the ev λ.

The algorithm for one real ev.

Form the $n \times n$ matrices of rank one:

$$
\begin{equation*}
S=\varepsilon \lambda_{0} x x^{*}, \quad T=\varepsilon \lambda_{0}^{2} x x^{*}, \quad U=\varepsilon \lambda_{0}^{3} x x^{*} . \tag{3}
\end{equation*}
$$

The algorithm for one real ev.

Form the $n \times n$ matrices of rank one:

$$
\begin{equation*}
S=\varepsilon \lambda_{0} x x^{*}, \quad T=\varepsilon \lambda_{0}^{2} x x^{*}, \quad U=\varepsilon \lambda_{0}^{3} x x^{*} . \tag{3}
\end{equation*}
$$

For update: $\lambda_{0} \rightarrow \lambda_{1}$, form

$$
\begin{equation*}
\hat{S}=\varepsilon \lambda_{1} x x^{*}, \quad \hat{T}=\varepsilon \lambda_{1}^{2} x x^{*}, \quad \hat{U}=\varepsilon \lambda_{1}^{3} x x^{*} \tag{4}
\end{equation*}
$$

(and note that the sign characteristic is preserved).
Constrain \hat{S} also so that $M^{-1}+(\hat{S}-S)>0$.

Updated coefficients

Then the updated mass matrix \hat{M} is given by

$$
\begin{equation*}
\hat{M}^{-1}=M^{-1}+(\hat{S}-S) . \tag{5}
\end{equation*}
$$

Updated coefficients

Then the updated mass matrix \hat{M} is given by

$$
\begin{equation*}
\hat{M}^{-1}=M^{-1}+(\hat{S}-S) \tag{5}
\end{equation*}
$$

The other updated coefficients:

$$
\begin{gather*}
\hat{D}=\hat{M}\left[M^{-1} D M^{-1}-(\hat{T}-T)\right] \hat{M} \tag{6}\\
\hat{K}=-\hat{M}\left[M^{-1}\left(D M^{-1} D-K\right) M^{-1}+(\hat{U}-U)\right] \hat{M}+\hat{D} \hat{M}^{-1} \hat{D} \tag{7}
\end{gather*}
$$

Updating a conjugate pair

Given ev's $\mu, \bar{\mu}$ with evectors v_{0} and w_{0}.

Updating a conjugate pair

Given ev's $\mu, \bar{\mu}$ with evectors v_{0} and w_{0}.
Calculate the (generally complex) number

$$
\begin{equation*}
k=w_{0}^{*} D v_{0}+2 \mu w_{0}^{*} M v_{0} \tag{8}
\end{equation*}
$$

Let κ be one of the square roots of k and form the normalized data:

$$
\begin{align*}
\text { ev } \mu \text { with evector } v & =v_{0} / \kappa, \\
\text { ev } \bar{\mu} \text { with evector } w & =w_{0} / \bar{\kappa} . \tag{9}
\end{align*}
$$

Updating a conjugate pair

Define matrices S, T, U of rank two:

$$
\begin{align*}
& S=\left[\begin{array}{ll}
v & w
\end{array}\right]\left[\begin{array}{ll}
0 & \mu \\
\bar{\mu} & 0
\end{array}\right]\left[\begin{array}{ll}
v & w
\end{array}\right]^{*}, \tag{10}\\
& T=\left[\begin{array}{ll}
v & w
\end{array}\right]\left[\begin{array}{ll}
0 & \mu \\
\bar{\mu} & 0
\end{array}\right]^{2}\left[\begin{array}{ll}
v & w
\end{array}\right]^{*}, \tag{11}\\
& U=\left[\begin{array}{ll}
v & w
\end{array}\right]\left[\begin{array}{cc}
0 & \mu \\
\bar{\mu} & 0
\end{array}\right]^{3}\left[\begin{array}{ll}
v & w
\end{array}\right]^{*} . \tag{12}
\end{align*}
$$

Updating a conjugate pair

For updated data $\mu \rightarrow \hat{\mu}, \bar{\mu} \rightarrow \overline{\hat{\mu}}$, form updated matrices $\hat{S}, \hat{T}, \hat{U}$:

$$
\begin{align*}
& \hat{S}=\left[\begin{array}{ll}
v & w
\end{array}\right]\left[\begin{array}{cc}
0 & \hat{\mu} \\
\hat{\mu} & 0
\end{array}\right]\left[\begin{array}{ll}
v & w
\end{array}\right]^{*}, \\
& \hat{T}=\left[\begin{array}{ll}
v & w
\end{array}\right]\left[\begin{array}{cc}
0 & \hat{\mu} \\
\hat{\mu} & 0
\end{array}\right]^{2}\left[\begin{array}{ll}
v & w
\end{array}\right]^{*}, \tag{13}\\
& \hat{U}=\left[\begin{array}{ll}
v & w
\end{array}\right]\left[\begin{array}{cc}
0 & \hat{\mu} \\
\hat{\mu} & 0
\end{array}\right]^{3}\left[\begin{array}{ll}
v & w
\end{array}\right]^{*} .
\end{align*}
$$

Constrain \hat{S} also so that $M^{-1}+(\hat{S}-S)>0$.

Conjugate pair

As before:

$$
\begin{gathered}
\hat{M}^{-1}=M^{-1}+(\hat{S}-S) \\
\hat{D}=\hat{M}\left[M^{-1} D M^{-1}-(\hat{T}-T)\right] \hat{M} \\
\hat{K}=-\hat{M}\left[M^{-1}\left(D M^{-1} D-K\right) M^{-1}+(\hat{U}-U)\right] \hat{M}+\hat{D} \hat{M}^{-1} \hat{D}
\end{gathered}
$$

A general theory

$$
J=\left[\begin{array}{cccc}
J_{c} & 0 & 0 & 0 \\
0 & U_{2} & 0 & 0 \\
0 & 0 & U_{3} & 0 \\
0 & 0 & 0 & J_{c}
\end{array}\right]=\left[\begin{array}{cccc}
U_{1}+i W & 0 & 0 & 0 \\
0 & U_{2} & 0 & 0 \\
0 & 0 & U_{3} & 0 \\
0 & 0 & 0 & U_{1}-i W
\end{array}\right] .
$$

A general theory

$$
\begin{gathered}
J=\left[\begin{array}{cccc}
J_{c} & 0 & 0 & 0 \\
0 & U_{2} & 0 & 0 \\
0 & 0 & U_{3} & 0 \\
0 & 0 & 0 & J_{c}
\end{array}\right]=\left[\begin{array}{cccc}
U_{1}+i W & 0 & 0 & 0 \\
0 & U_{2} & 0 & 0 \\
0 & 0 & U_{3} & 0 \\
0 & 0 & 0 & U_{1}-i W
\end{array}\right] . \\
X=\left[\begin{array}{llll}
X_{c 1} & X_{R 1} & X_{R 2} & X_{c 2}
\end{array}\right],
\end{gathered}
$$

A general theory

(X, J) form a Jordan pair for $L(\lambda)$ and, necessarily,

$$
\operatorname{det}\left[\begin{array}{c}
X \\
X J
\end{array}\right] \neq 0
$$

A general theory

(X, J) form a Jordan pair for $L(\lambda)$ and, necessarily,

$$
\operatorname{det}\left[\begin{array}{c}
X \\
X J
\end{array}\right] \neq 0
$$

Define

$$
P:=\left[\begin{array}{cccc}
0 & 0 & 0 & I_{n-r} \\
0 & I_{r} & 0 & 0 \\
0 & 0 & -I_{r} & 0 \\
I_{n-r} & 0 & 0 & 0
\end{array}\right]
$$

(taking care of the sign characteristics).
N.B.

$$
P^{*}=P \text { and }(P J)^{*}=P J .
$$

A general theory

There is an X (see above) such that

$$
\begin{equation*}
X P X^{*}=0, \quad X(J P) X^{*}=M^{-1}>0 \tag{14}
\end{equation*}
$$

The moments of the system are

$$
\Gamma_{j}=X\left(ر^{j} P\right) X^{*}
$$

for all integers j for which J^{j} is defined.
Coefficents of $L(\lambda)$ are determined by moments (and hence X, J, P):

$$
M=\Gamma_{1}^{-1}, \quad D=-M \Gamma_{2} M, \quad K=-M \Gamma_{3} M+D \Gamma_{1} D .
$$

(First techniques are consequences of this.)

The scalar case

Example $n=1$ and $L(\lambda)=m \lambda^{2}+b \lambda+c, \quad m>0$
(a) Real zeros λ_{1}, λ_{2} with $\lambda_{1}>\lambda_{2}$,

$$
X=\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad J=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad P=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

(b) Non-real zeros $\mu \pm i\left(\lambda_{1}-\lambda_{2}\right) / 2$ with $\lambda_{1}>\lambda_{2}$,

$$
X=\left[\begin{array}{ll}
e^{i \pi / 4} & e^{-i \pi / 4}
\end{array}\right], J=\left[\begin{array}{cc}
\mu+i \frac{\lambda_{1}-\lambda_{2}}{2} & 0 \\
0 & \mu-i \frac{\lambda_{1}-\lambda_{2}}{2}
\end{array}\right], P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

The scalar case

Example $n=1$ and $L(\lambda)=m \lambda^{2}+b \lambda+c, \quad m>0$
(a) Real zeros λ_{1}, λ_{2} with $\lambda_{1}>\lambda_{2}$,

$$
X=\left[\begin{array}{ll}
1 & 1
\end{array}\right], \quad J=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right], \quad P=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

(b) Non-real zeros $\mu \pm i\left(\lambda_{1}-\lambda_{2}\right) / 2$ with $\lambda_{1}>\lambda_{2}$,

$$
X=\left[\begin{array}{ll}
e^{i \pi / 4} & e^{-i \pi / 4}
\end{array}\right], J=\left[\begin{array}{cc}
\mu+i \frac{\lambda_{1}-\lambda_{2}}{2} & 0 \\
0 & \mu-i \frac{\lambda_{1}-\lambda_{2}}{2}
\end{array}\right], P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

In both cases, $m^{-1}=X J P X^{*}=\lambda_{1}-\lambda_{2}$. Smooth transition from real to non-real eigenvalues, or vice versa, will generally induce singularities in the coefficients.

A general theory

Strategy for model updating

- Given a system with Hermitian coefficients M, D, K and $M>0$, compute the canonical matrices X, P, J above.

A general theory

Strategy for model updating

- Given a system with Hermitian coefficients M, D, K and $M>0$, compute the canonical matrices X, P, J above.
- Make the updates in X and J to produce \hat{X}, \hat{J} in such a way that:
(a) P will not be disturbed, and
(b) $\hat{X} P \hat{X}^{*}=0$, and $\hat{X}(\hat{J} P) \hat{X}^{*}>0$.

A general theory

Strategy for model updating

- Given a system with Hermitian coefficients M, D, K and $M>0$, compute the canonical matrices X, P, J above.
- Make the updates in X and J to produce \hat{X}, \hat{J} in such a way that: (a) P will not be disturbed, and (b) $\hat{X} P \hat{X}^{*}=0$, and $\hat{X}(\hat{J} P) \hat{X}^{*}>0$.
- Compute the moments defined by \hat{X}, P, \hat{J}, and hence new coefficients $\hat{M}, \hat{D}, \hat{K}$.

A general theory

Strategy for model updating

- Given a system with Hermitian coefficients M, D, K and $M>0$, compute the canonical matrices X, P, J above.
- Make the updates in X and J to produce \hat{X}, \hat{J} in such a way that: (a) P will not be disturbed, and (b) $\hat{X} P \hat{X}^{*}=0$, and $\hat{X}(\hat{J} P) \hat{X}^{*}>0$.
- Compute the moments defined by \hat{X}, P, \hat{J}, and hence new coefficients $\hat{M}, \hat{D}, \hat{K}$.

Can perturb ev alone, or evectors alone, or both together.

Difficulty: ensuring that $X P X^{*}=0$ holds after updating.
But, this problem does not arise if the evector matrix, X, is not to be changed $(\hat{X}=X)$, and adjustments are made to the ev only.

In particular: It is not possible to update one evector and retain the symmetry/no-spill-over properties.

$$
\begin{gathered}
M=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \quad K=\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right] \\
J=\left[\begin{array}{cccc}
-1.0656+i(2.1742) & 0 & 0 & 0 \\
0 & -0.4175 & 0 & 0 \\
0 & 0 & -2.4513 & 0 \\
0 & 0 & 0 & -1.0656-i(2.1742)
\end{array}\right] \\
P=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
\end{gathered}
$$

Normalised evectors:

$$
X=\left[\begin{array}{cccc}
-0.3021+i(0.3333) & 0.2967 & -i(0.2201) & -0.3021-i(0.3333) \\
-0.1567+i(0.0774) & -0.6438 & i(0.6721) & -0.1567-i(0.0774)
\end{array}\right] .
$$

$$
\begin{gathered}
M=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad D=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \quad K=\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right] \\
J=\left[\begin{array}{cccc}
-1.0656+i(2.1742) & 0 & 0 & 0 \\
0 & -0.4175 & 0 & 0 \\
0 & 0 & -2.4513 & 0 \\
0 & 0 & 0 & -1.0656-i(2.1742)
\end{array}\right] \\
P=\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Normalised evectors:

$$
X=\left[\begin{array}{cccc}
-0.3021+i(0.3333) & 0.2967 & -i(0.2201) & -0.3021-i(0.3333) \\
-0.1567+i(0.0774) & -0.6438 & i(0.6721) & -0.1567-i(0.0774)
\end{array}\right] .
$$

Updated spectrum: $-4 \pm 4 i, \quad-1, \quad-4$. Updated system:

$$
\hat{M}=\left[\begin{array}{ll}
0.5334 & -0.118 \\
& 0.6959
\end{array}\right], \quad \hat{D}=\left[\begin{array}{ll}
3.8308 & 0.8350 \\
& 4.0086
\end{array}\right], \quad \hat{K}=\left[\begin{array}{ll}
14.8328 & 6.1635 \\
& 5.7632
\end{array}\right] .
$$

B.N. Datta, D.R. Sarkissian, Theory and computations of some inverse eigenvalue problems for the quadratic pencil, in "Structured matrices and operator theory in numerical analysis, control, signal and image processing", Contemporary Mathematics, 2001.
围 J.B. Carvalho, B.N. Datta, W. Lin, C. Wang, Symmetry preserving eigenvalue embedding in finite-element model updating of vibrating structures, J. of Sound and Vibration, 290, 2006, 839-864.
图 M.T. Chu, S-F.Xu, Spectral decomposition of self-adjoint quadratic pencils and its applications, Math.Comp., to appear.
(P. Lancaster, Model updating for self-adjoint quadratic eigenvalue problems, Lin.Alg. and its Appl, 428, 2008, 2778-2790.

See also: Manchester Institute for Mathematical Sciences: EPrint 2006.407, 2006.

Time to go!

