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Overview

1. Multigrid Method
2. Structured Matrices and Generating Functions

3. Compact Fourier Analysis for Multigrid methods based on the symbol




1. Multigrid Method LK

Problem: Solve linear system Ax=D

Apply iterative solver like Gauss-Seidel via splitting A = M+N = (L+D)+LT:

Xor  Xen =X M7= Ax) =MTb+(1 -MA)X,

Convergence dependingon || — M 1 A|| = || R||



1. Multigrid Method

Problem: Solve linear system Ax=D

Apply iterative solver like Gauss-Seidel via splitting A = M+N = (L+D)+LT:

Xor  Xen =X M7= Ax) =MTb+(1 -MA)X,

Convergence dependingon || — M 1 A|| = || R||

Observation: Fast convergence in eigenspace to small eigenvalues of R,
resp. large eigenvalues of A

Slow convergence in eigenspace to large eigenvalues of R,
resp. small eigenvalues of A

|dea: Multi-iterative method with different iterations that remove the 4
error in different subspaces.



Laplacian

Consider elliptic PDE in 1D with discretization: —t—t—
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Fourier Analysis

Eigenvectors s, of matrix A are closely related to sine function:

A = 2(1—cos(k—”j]; S, =(sin(k J—”D —sin(kx), xe[0,r]
n+1 n+1)).

Plot: sin(kx), k=1,2,3:
. VAN

1

0.8r

06

Low frequency:
k=1, eigenmode: sin(x),
eigenvalue: 2(1-cos(Tr/(n+1)))=12/(2n2)=0;""|

04+

High frequency: 02¢
k=n, eigenmode: sin(nx), 04l
eigenvalue: 2(1-cos(n 11/(n+1)))=4;




Fourier Analysis for Jacobi L=

Error reduction of m Jacobi iteration steps, considered for different eigenmodes:

kz )
e = COS| —— S
" Z( (n+1)) G

Error reduction for k=1 (low frequency component):
Error reduction for k=n/2 (medium frequency component):

Error reduction for k=n (high frequency compongnt):
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Very good error reduction for medium frequency;

Poor error reduction for low/high frequency. °
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A(k)=cos(kTr/(n+1))

cos(tr/(n+1)) = 1
cos(ntr/(2(n+1))) =0

cos(ntr/(n+1)) = -1
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Fourier Analysis for Damped  [-.:&
Jacobl

Is is possible to modify Jacobi iteration such that it removes high frequency error
in the same way as Gauss-Seidel?

Solution: damped Jacobi:

X =x® oD, = xM + D (b - AXN) =
=D 'b+(1 —wDAK® = C;b+(l ‘% Aj;

Error reduction for eigenmode:

ER etz
T N




rror Reduction damped Jaco

High frequency modes are related to 11/2 <= x <= 11, resp. n/2 <=k <=n.
k=n/2, x=11/2: l-w(l-cos(z/2))=1-w
k=n, X=TT: l1-w+wcos(7r)=1-2w

To minimize this function, we have to choose w such that these two values

have the same absolute value but different sign: 2
l-w=20w-1= WDyt :g,

Error reduction for these high frequency modes: 1 —w,, =1/3.
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Error reduction depending on
k and omega
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Coarsening

Similarly, the high frequency error components are reduced by Gauss-Seidel and
Red Black — Gauss-Seidel.

After reducing the high frequency error by some smoothing iterations with
damped Jacobi or GS,
the residual b — Ax®) is smooth and can be represented on a coarser grid.
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Mapping from fine to coarse representation?z

5,

\S)

- Smooth function in fine and

u coarse discretization
1 15+
U2 U2 1
05+
U, N U, Projection or Restriction, o=

e.g. trivial injection
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Coarsening (continued)

Better coarsening by mean value:

u

1,coarse

u 2,coarse

u

n/2,coarse

1 2
0 0

o B

Coarse to fine via prolongation P, e.g.

1
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1,coarse

u 2,coarse

u

n/2,coarse

=Pu

coarse

Xi 4 +2X + X4

X, —> 1=246,...
0 O U,
2 1 0 O u,

“1=RuU
01 2 1

un

U;
:RTucoarse;

(ui—i_ui+1)/2

Fine to coarse
via
restriction R

for 1 odd

for 1 even
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PDE in 2D

4 -1 -1
~1 4 -1
-1 4 -1

-1 -1 4

Uty =—F(6Y) u(xY)=g(xy)  for
I+lj +il; | -1, 4 |J+1+t21l2J |,j—1 :_fi,j

A 21

A=ARI+I®A = +] =1

Y |
X _a’Xn+l_b’y0 :a’yn+1:b
—1
21 =
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Twogrid and Multigrid

(1) Apply a few steps smoothing iterations (damped Jacobi, GS, RB-GS)

(2) Coarse grid correction:

- Consider the residual equation  A(X®+X_....i0n)=D, that is related to
the best approximate solution x®):

AXcorrection = b-Ax{k) = M

Restriction to the coarse grid via R
Solve Residual equation on coarse grid
Prolongate the solution back to the fine grid
Add the correction to xk)

Repeat until convergence.

V - Cycle
Multigrid: ~ Presmoothing Postsmoothing
Coarsening Prolongation
Presmoothing Postsmoothing
Coarsening Prolongation
If coarse system Presmoothing Postsmoothing
is ,similar® to Coarsening Prolongation 13

original problem! Solve coarse system



Two Grid Error Reduction

Smoothing with M leads to error reductionby | —M A

Error reduction by Coarse Grid Correction: X =X, +PA_ P’ (b — Axo,d)

Crew = Xnew — X = Xog T+ PAc_o%arse P (b o Axold ) o (Y T l:)'A‘c_olarsePT (b o AY)):
=€g — (PAc_olarse PT )Aeold - (I o (PAc_olarse PT )Akold

Coarse matrix A is given as Galerkin projection A, = P' AP =RAR'

coarse

14




Two Grid Error Reduction ===
Smoothing with M leads to error reduction by | —M ™A
Error reduction by Coarse Grid Correction: X = Xyg + PALPT (0— Ax,)
oo = Xoow — X = Xog + PAL P (b— Ax,,) — (X + PAL PT (b— AX) )=
= Coia (PAc_olarsePT )Aeo,d = (' - (P oarse P )A)eom
Coarse matrix A__ . is given as Galerkin projection A, = P' AP =RAR'

Overall error reduction by pre/post-smoothing by m
steps with M___, resp. M

orer TESP. M
and Coarse Grid Correction:

oost lferations

pre’ post’

post

i Pl Al
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2. Structured Matrices and il

Generating Functions

Connection [ matrix <-> function ] for the class of circulant matrices:

Co G o Gy
C ., C :
C= ”:1 0 . =F"AF, A, =p(@")
1
C1 Cn—1 CO

_ - 27
p(X)=c,+CX+---+C X" x=¢€"; a)zexp(— ;
n

spectrum(C )< range(C) < range(p)  on the unit circle.

16




tO t—l -n+1
: . Lt ot . : .
Toeplitz matrix T, = - .~ . t =T (t .ttt ) =T (F);
: -1
tn—1 1:1 tO
: . - —ijx : o
Generating function f (X) = the or symbol as function on the unit circle.
j=—00

spectrum(T. ()< range(T, (f))< range(f)

Example: T _=tridiag(-1,2,-1) with function f(x) = -exp(ix) + 2 - exp(-ix) = 2(1-cos(x))

17



T.(f) and T,(g) banded matrices, resp. f(x) and g(x) trigonometric polynomials:

T(f)-T.(9)=T (f-g)+low_rank =T (g)-T, (f)+low_rank

Tn‘l(f)-Tn(g):T{%)How_rank for % continuous

For general spd Toeplitz matrices:

spectrum(T ()T, (g)) range(T ()T, (g)) range(?j

Proof: Ag range(?j & % >Aor <A)vxe g-Af >0(<0)vx <

& T (g-AF)>0(<0)= A ¢ spectrum(T,(g) = AT, (f)) =
S spectrum(Tn‘l( f)T (g)) 18



TO T—l T—n
. T 5
Symbol for multilevel Toeplitz: 1 T Toeplitz
S
Tn Tl TO
. : f — V't p kgl
Symbol as scalar function in variables T (X, Y) = Z K& ¢
K, ]
Tll T1,2 Tl,n
Symbol for Block Toeplitz: Tf*l T: , T, Toeplitz  matrices
Tn,l Tnn—l Tn,r;
. fu(x) -
Symbol as block function F(X) = _ .
19

Multilevel Block Toelitz: symbol as matrix functions in more variables F(x,y,..)




< Block and Multilevel Toeplitz

Symbol as block function

F (%) = [ f11:(x) j

Tl,l Tl 2 Tl,n TO T—l Tl—n
T, : T L.
: Toan | s e e T,
Tn,1 ces Tn,n_l Tn’n '|'n_1 . T1 TO
with T, Toeplitz  matrices with T, general  matrices

20



3. Multigrid by symbol

Earlier work on Multigrid for structured matrices: R. Chan, S. Serra,...

Replace in each step of Multigrid the matrices by their block symbols:

- original matrix
- smoother
- restriction/prolongation

Use block symbols for
- smoothing analysis
- analysis of the overall error reduction of Twogrid
- design of Multigrid (projection, smoother)

21



ine/Coarse by Block Functio

Goal: Write Twogrid step in symbol - Fourier Analysis

In Multigrid we have to deal with two classes of grid point:
- grid points that appear also on the coarse level, and
- grid points that are only fine, but non-coarse

To model these two classes of entries in our vector f, resp. Matrix A, we
have to introduce Block Symbols or Block generating functions.

2 | -1
1] 2 |-1

. " . Scalar case

—>—e"+2-¢e";

2 -1
R 0 -1\ (2 -1 0 0 i

112 -1 NGEPLY e ey - 2 _ —1-e Block case

1 9 0 O -1 2 0 -1 —1-e™ 2
— 22




coarsi nOﬂCOerG ciarse*nonc.

<«— coarse —>
<«— noncoarse ——p

Fine/Coarse in Block Matrix

coalse

<4— Coarse

2 -1
-1 2 |[-1
-1({2 -1
1 2 <« noncoarse

_1_ e—iX

nonioarse coarse nonioarse

THE T

Coarse/noncoarse €<—-> odd/even

Therefore, the projection from fine to coarse is given by picking every second
row/column in the full matrix,
resp. picking the first row/column in the symbol.

Trivial injection:

1 0
010
01

(1 0)

23
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Fine to Coarse Reduction [*-i

2 -—-a)l
Galerkin reduction via trivial injection: (1 O)( _ ZQJ(OJ =2
-

Better projection by (1 2 1) stencil taking the mean value of neighbouring points.
The related projection matrix R can be seen as combination of full (1 2 1) stencil
matrix, restricted by trivial injection in the form

1 2 1 1 00 2 1

R= 1 2 1|= 1 0 01 2 - |=E-B

with n x n — Toeplitz matrix B = tridiag(1,2,1) = T,(2,1,0,...,0)

24
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Fine to Coarse Reduction [*-:

2 -—-a)l
Galerkin reduction via trivial injection: (1 O)( _ ZQJ(OJ =2
-

Better projection by (1 2 1) stencil taking the mean value of neighbouring points.
The related projection matrix R can be seen as combination of full (1 2 1) stencil
matrix, restricted by trivial injection in the form

1 21 1 00 2 1
R= 1 2 1|= 1 0 0|1 2 "-.|=E-B
with n x n — Toeplitz matrix B = tridiag(1,2,1) = T,(2,1,0,...,0)

Symbol for B: b(x) =2(1+cos(x)); B(x)= (E Zj;
o

ACO&I’SE — RART (EB BET).

o of2 515 22

:2( \a\ 2(4 - (2+2003(x)))= 2(2—cos(x))= 21 (x); 25
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Smoother <-> Symbol '

2 0
Jacobi: M =diag(A) =2l — m(x)=2 and M(x)=(O 2)

_1 2 _ _ alx
GS: M= L — m(x)=2-e* and M(x)=(21 Zj;

Now all components can be written as block symbols:
The matrix A itself (scalar and block function)

The smoother M (scalar and block function)

The restriction R (block function and trivial injection)
The coarse system (scalar function)

Hence we can analyse the smoother and the overall error in terms of block functions
26



Jacobi: I-M 7 A=1-wD"A—e(x) :1—w%2(1—cos(x)) =
T
=1-w+ wcos(X), X€|:E,7Z':|

e(x) monotonic function,

1-w and 1-2w optimal for w_=2/3, e(w)<=1/3.

opt

GS: | _MAA=I -0l A e(x) =1 22~ C0))
2 —exp(ix)
T 2 ‘ \/5—8a)+4a)2 o=l )
= —1-— =
=5 5 _)%f <
4| [3-4a g 1 - e(X)s J5
ol Ay

/

Symmetric GS: (I —awL*A) (1 —al " A) w=1-> e<= 1/5 27



in:»

6o o

o oo
oo ....‘.;.3.....;;“.... Hemitua

— & 00
o0 o

L]
<
s

moothing analysis via Block Functior

2 -«

[

block symbol of matrix A
—-a 2

> 2:

Eigenvalues of F: 4 =2+ ‘a‘ _24 ‘l+ aiX

A =2-la|=2-[l+e"|<2, 2,=0 for x=0;

Smoothing is related to eigenvalues >= 2, hence to A, with eigenvector

ol
: \/E‘a‘ —‘0!‘

High frequency components are related to u, for xin full [O,TT].

Therefore, determining the behaviour on high frequency components
can be achieved by the projection u,HF u,.

Advantage of blockwise analysis: Take into account different character
of grid points! 28



Smoothing analysis for Jacobi
1 0) of 2 -2a) (l-0 owal2
0 1) 2l-a 2 ) \wa/2 1-w
Projection on high frequency components:
W 1-0o wal?2 1 [ -0 owal?2) «
U — ulz—z(a —‘05‘ — _ -
woal?2 1-w aﬂ wal?2 1-w ‘a
- 2‘;2 (Z(l—a))‘oc‘2 —a)‘af)zl—a)—a)%
N a=0:1-w 2 The same result as in
‘a‘:‘l+e clo.27] a:2:1_2w_)wopt:§ the scalar smoothing

analysis!
29




& moothing analysis for GS and RB-G :

GS:

RB-GS:

(L 0y (2 -\ (2 -a )
u, 0 1—0)_1 ) 7 9 u, a=1l+e

2 -1 2
) -1 - )
2 R | 2 2 0
A—- X L= =|
-1 -1 2 -1 -1 2 —-a 2
-1 2 -1 2

(1 o 112 0Y 2 -a
=u, —0| . u,
0 1 —Of/4 1/2 —a 2 30




CGC

Block symbol of the Coarse Grid Correction CGC.:

o i e e <L 3

1

4(1—cos(x))
B 1

- 4(1-cos(x))

0 4—4cos(X)

[ 0 0

\a(2—-2cos(x)) 4-4cos(x)

8

~2d]

[4—4cos(x) 0 j_
4&—‘0425 0

]:

|

0 O
al2 1

|

0

Analysis of Coarse Grid Correction

J

31
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Overall Error Analysis

Red-Black postsmoothing:
2 - 2 - 0 0
|-M*A=M M -A)> M I T l=m
0 2 -a 2 a 0

Postsmoothing and CGC:

(1-M A1 —=PAPTA)> M 1[2 8)(532 (1)j i (8 8]

Hence, standard projection with RB-GS gives MG as a direct solver =
Twogrid leads to error 0 after one step and the coarse system is the original A.
Therefore in the V-cycle only one step of smoothing is necessary and

only one V-cycle run. 2



Short view on 2D =

Block Matrix A - block matrix function F(x,y), e.g. of size k x k
Projection part B > block matrix function B(x,y)

Trivial injection - block matrix function p=(1 0 ..0)

Pojection P 2>  P(xy) =B(x,y) pT

Coarse Grid matrix - scalar function f(x,y) = p B(x,y)F(x,y)B(x,y) p" = PFPT

Smoother M - block matrix function M(x,y)

post

(=M 2 A (1-P(PTAP)'PT - A)(1 =M LA™

33



Example

Matrix: A =tridiag(-1,4,-1); A=tridiag(-I, A ,—I)
(4 —a|-B 0)
—a 4|0 - . i
Symbol: F(X,Y)=_g T2 _’z with o =1+e%, p=1+e",
. 0 —,B -a 4)

4 _eix _eiy 0

_1 4 O _ eiy
GS-Smoother: Mg = |

34



Error

(1-m=A)(1-P(PTAP)"PT - A)

(1-M™F)-cGC =M *(M —F)-CGC

CGC-symbol is singular of rank k-1 by construction:
4 C, 3\
CGC=(d, - dy)

\ Cx-1/

Find smoother M such that: (I\/I — F)-(d1 dk_l)=0

M —F of rank k-1, if possible. 35



F— ( fy j
L

M = fy f'
0 Kk,

(1-M7F)cec=M"

Example:
0 - 0
cec=|.

(M —F).ceczml-(o oj.[o O)=0
fl O * *

36
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Conclusions

Compact Fourier analysis based on the symbol

- can lead to Multigrid as a direct solver

- helps to analyse smoothing and overall error taking into
account the different character of grid points

- helps to design efficient MG in view of overall error:
optimal for fixed projection,
optimal for fixed smoother,
optimal combination of projection and smoother.

37
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