Fast Eigenvalue Computation of Symmetric Rationally Generated Toeplitz Matrices

Luca Gemignani

Dipartimento di Matematica, Università di Pisa, Italy gemignan@dm.unipi.it

This is a joint work with K. Frederix & M. Van Barel

Cortona 2008

A Classical Example

► The Kac-Murdock-Szegö Toeplitz matrix

$$T_n = (0.5^{|i-j|})_{i,j=1}^n = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{4} & \cdots \\ \frac{1}{2} & \ddots & \ddots & \ddots \\ \frac{1}{4} & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

$$t(z) = \sum_{j=-\infty}^{\infty} (\frac{1}{2})^{|j|} z_j = \frac{0.5z}{1 - 0.5z} + \frac{1}{1 - 0.5z^{-1}} = \frac{0.75}{(1 - 0.5z)(1 - 0.5z^{-1})}$$

We aim to compute the eigenvalues of T_n efficiently and accurately exploiting the relationships between T_n and its symbol t(z)

Previous Literature

- Functional iteration methods based on the fast evaluation of the characteristic polynomial and/or associated rational functions [Trench; Bini & Di Benedetto]
 - 1.1 suited for computing a few eigenvalues
 - 1.2 accuracy and computational issues
- Matrix methods based on matrix algebra embeddings and eigenvalue computation of matrices modified by a rank-one correction [Handy & Barlow; Di Benedetto]
 - 2.1 eigenvector computation can be ill-conditioned depending on the separation of the eigenvalues

$$\min_{i \neq j} |\lambda_i(T_{500}) - \lambda_j(T_{500})| \simeq 10^{-6}$$

Our Proposal

▶ Matrix methods based on the exploitation of the rank structure of T_n

Plot of the 2-nd singular value of the off-diagonal submatrices of $T_{\rm 500}$

We study efficient methods for the tridiagonalization of T_n by orthogonal similarity

Condensed Representations

► The rank structure of T_n is induced by condensed representations involving band matrices

1. If
$$t(z) = \frac{p(z^{-1})}{a(z^{-1})} + \frac{p(z)}{a(z)}$$
 then [Dickinson]
$$T_n = T_a^{-1} \cdot T_p + T_p^T \cdot T_a^T$$

2. More generally, if $t(z) = \frac{c(z)}{a(z)a(1/z)}$, with $\deg(a(z)) = q$ and $\deg(c(z)) = l$, then

$$T_n = T_n(s) + T_a^{-1} \cdot T_p + T_p^T \cdot T_a^T,$$
 $s(z) = \sum_{i=q-l}^{l-q} s_{|i|} z^i, \quad p(z) = p_0 + \ldots + p_q z^q,$ $\mathcal{J} \mathbf{p} = \boldsymbol{\beta}, \quad \mathcal{J} = \begin{bmatrix} a_0 & \ldots & a_q \\ & \ddots & & \vdots \\ & & \ddots & \vdots \\ & & a_0 \end{bmatrix} + \begin{bmatrix} a_0 & \ldots & a_q \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ a_q \end{bmatrix}_{\text{INIV}}$

Remarks on the Jury System

- ▶ \mathcal{J} is invertible since the zeros of a(z) have modulus greater than 1 [Demeure]
 - 1. the conditioning of ${\mathcal J}$ depends on the closeness of the zeros to the unit circle
- ▶ \mathcal{J} is Toeplitz-plus-Hankel. The representation can be computed in $O(I^2 + q^2)$ flops by using
 - 1. fast direct methods based on displacement rank techniques
 - 2. fast iterative methods based on spectral factorization techniques [Demeure; Bacciardi, Gemignani]

Quasiseparable Representations

- Assume for simplicity l < q and $n = m \cdot q$
- 1. $\max_{1 \le k \le n-1} \operatorname{rank} T_n(k+1: n, 1: k) \le q$
- 2. T_n can be partitioned in a block form as

$$T_n = (T_{i,j}^{(n)})_{i,j=1}^m, \quad T_{i,j}^{(n)} \in \mathbb{R}^{q \times q},$$
 $T_{i,j}^{(n)} = A \cdot F_a^{q(i-j-1)} \cdot B, i \ge j, \quad F_a = \text{compan}(z^q a(z^{-1}))$

3. the matrix $P_n = B_n \cdot T_n \cdot B_n^T$ is a symmetric block tridiagonal matrix, where

The Tridiagonal Reduction Algorithm

1.
$$U \cdot \begin{bmatrix} I_q \\ \Sigma \end{bmatrix} = \begin{bmatrix} R \\ 0 \end{bmatrix}$$
, $\mathcal{G} = I_{(m-2)q} \oplus U$

2. the multiplication $\mathcal{G} \cdot B_n^{-1}$ creates a bulge

$$\mathcal{G} \cdot \mathcal{B}_n^{-1} = \begin{bmatrix} & \star & & 0 \\ \hline \Sigma^{m-2}R & \dots & \Sigma R & I_{2q} \end{bmatrix} \cdot Z, \quad Z = (I_{(m-2)q} \oplus \begin{bmatrix} R & U_{1,2} \\ 0 & U_{2,2} \end{bmatrix}$$

- 3. the multiplication $Z \cdot P_n \cdot Z^T$ creates a bulge in the block tridiagonal structure of P_n
- 4. this bulge can be chased away by a block Givens transformation which commutes with the first factor of $\mathcal{G} \cdot B_n^{-1}$
- Overall complexity $O(m^2q^3) = O(n^2q)$ flops

Givens-weight Representations

1. Givens part: An orthogonal matrix Q such that

$$Q^T \cdot T_n = R$$

where R is lower banded with q subdiagonals. Since

$$Q^{T} T_{n} = (T_{a}Q)^{-1} T_{p} + (T_{p}Q)^{T} T_{a}^{-T}$$

Q is the product of (block) Givens transformations determined to convert T_a into upper triangular form

2. Weight part: Elements generated in the factorization around the main diagonal needed to reconstruct the lower part of T_n from $T_n = Q \cdot R$

LINIVERSITÀ DI PISA

The Tridiagonal Reduction Algorithm

- 1. Annihilate the Givens part by multiplying R on the right and on the left by the factors of Q.
- 2. At intermediate steps the process generates bulges into the band profile of *R* which can be chased away by standard techniques.
- 3. As result, at the very end T_n is transformed by orthogonal similarity to banded form with bandwidth q
- ▶ Overall complexity $O(m^2q^3) = O(n^2q)$ flops

Numerical Experiments

- We have compared the Matlab implementations of our algorithms
 - 1. $alg_{-}1$ uses the block quasiseparable representation to tridiagonalize T_n
 - 2. alg_2 uses the Givens-weight representation to tridiagonalize T_n
- ► For comparison, T_n is first determined by evaluation-interpolation schemes and then its eigenvalues are computed by the *eig* function

Numerical Tests

Example 1

$$T_n = (0.5^{|i-j|})_{i,j=1}^n, \quad t(z) = \frac{0.75}{(1-0.5z)(1-0.5z^{-1})}$$

Example 2

$$t(z) = \frac{z^{-2} - 3.5z^{-1} + 1.5 - 3.5z + z^2}{a(z)a(z^{-1})}, \quad a(z) = (1 - 0.1z)(1 - 0.2z)$$

► Example 3

$$t(z) = \frac{z^{-3} - z^{-2} + 2z^{-1} + 1 + 2z - z^2 + z^3}{a(z)a(z^{-1})}, \quad a(z) = 1 - 0.4z - 0.47z^2 + 0.21z^3$$

n	Example 1	Example 2	Example 3
10	1.0×10^{-15}	6.4×10^{-16}	$1.6 imes 10^{-15}$
50	2.0×10^{-15}	1.2×10^{-15}	3.2×10^{-15}
100	4.1×10^{-15}	1.7×10^{-15}	3.3×10^{-15}
500	1.4×10^{-14}	3.5×10^{-15}	1.0×10^{-14}
1000	2.3×10^{-14}	5.6×10^{-15}	1.6×10^{-14}

Table: Numerical results generated by alg_1 for example 1, 2, 3.

n	Example 1	Example 2	Example 3
10	5.2×10^{-16}	6.6×10^{-16}	1.3×10^{-15}
50	$1.1 imes 10^{-15}$	1.3×10^{-15}	2.6×10^{-15}
100	$1.4 imes 10^{-15}$	1.2×10^{-15}	4.1×10^{-15}
500	1.7×10^{-15}	4.1×10^{-15}	8.2×10^{-15}
1000	1.6×10^{-15}	4.0×10^{-15}	1.8×10^{-15}

Table: Numerical results generated by alg_2 for example 1, 2, 3.

Some Harder Tests

- Try with larger values of q
- ▶ Try for different distribution of the zeros of a(z). This affects the conditioning of the Jury matrix
- 1. Case 1: q = 20 and the zeros of a(z) are approximately uniformly distributed around the unit circle;
- 2. Case 2: q = 20 and some zeros are clustered but there are still zeros at both the sides of the unit circle;
- 3. Case 3: q = 20 and all the zeros are located at one side of the unit circle.

n	Case 1	Case 2	Case 3
100	1.3×10^{-15}	5.7×10^{-13}	8.0×10^{-4}
500	4.8×10^{-15}	$5.6 imes 10^{-13}$	$1.3 imes 10^{-3}$
1000	5.3×10^{-15}	$5.6 imes 10^{-13}$	$1.4 imes 10^{-3}$
$\kappa(\mathcal{J})$	$7.5 imes 10^{0}$	$1.6 imes 10^4$	$1.6 imes 10^{11}$

Table: Numerical results generated by $alg_{-}1$ for Example q=20 in the three different cases.

n	Case 1	Case 2	Case 3
100	1.6×10^{-15}	1.1×10^{-13}	2.0×10^{-4}
500	3.0×10^{-15}	1.3×10^{-13}	$4.9 imes 10^{-4}$
1000	7.5×10^{-15}	1.7×10^{-13}	$6.3 imes 10^{-4}$
$\kappa(\mathcal{J})$	$7.5 imes 10^{0}$	$1.6 imes 10^4$	$1.6 imes 10^{11}$

Table: Numerical results generated by alg_2 for Example q=20 in the three different cases.

Conclusions and Future Work

- The eigenvalue algorithms are fast and as accurate as the computation of the rank structure from the Toeplitz symbol
- ▶ The accuracy is comparable for both representations

- Timing comparisons for practical efficiency
- Extensions to generalized eigenvalue problem and block Toeplitz matrices

