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A Classical Example

I The Kac-Murdock-Szegö Toeplitz matrix

Tn = (0.5|i−j |)ni ,j=1 =


1 1

2
1
4 . . .

1
2

. . .
. . .

. . .

1
4

. . .
. . .

. . .
...

. . .
. . .

. . .



t(z) =
∞∑

j=−∞
(
1

2
)|j |zj =

0.5z

1− 0.5z
+

1

1− 0.5z−1
=

0.75

(1− 0.5z)(1− 0.5z−1)

I We aim to compute the eigenvalues of Tn efficiently and
accurately exploiting the relationships between Tn and its
symbol t(z)
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Previous Literature

1. Functional iteration methods based on the fast evaluation of
the characteristic polynomial and/or associated rational
functions [Trench; Bini & Di Benedetto]

1.1 suited for computing a few eigenvalues
1.2 accuracy and computational issues

2. Matrix methods based on matrix algebra embeddings and
eigenvalue computation of matrices modified by a rank-one
correction [Handy & Barlow; Di Benedetto]

2.1 eigenvector computation can be ill-conditioned depending on
the separation of the eigenvalues

min
i 6=j

|λi (T500)− λj(T500)| ' 10−6
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Our Proposal

I Matrix methods based on the exploitation of the rank
structure of Tn
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T500

I We study efficient methods for the tridiagonalization of Tn by
orthogonal similarity
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Condensed Representations

I The rank structure of Tn is induced by condensed
representations involving band matrices

1. If t(z) = p(z−1)
a(z−1) + p(z)

a(z) then [Dickinson]

Tn = T−1
a · Tp + TT

p · TT
a

2. More generally, if t(z) = c(z)
a(z)a(1/z) , with deg(a(z)) = q and

deg(c(z)) = l , then

Tn = Tn(s) + T−1
a · Tp + TT

p · TT
a ,

s(z) =
∑l−q

i=q−l s|i|z
i , p(z) = p0 + . . . + pqz

q,
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Remarks on the Jury System

I J is invertible since the zeros of a(z) have modulus greater
than 1 [Demeure]

1. the conditioning of J depends on the closeness of the zeros to
the unit circle

I J is Toeplitz-plus-Hankel. The representation can be
computed in O(l2 + q2) flops by using

1. fast direct methods based on displacement rank techniques
2. fast iterative methods based on spectral factorization

techniques [Demeure; Bacciardi, Gemignani]
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Quasiseparable Representations

I Assume for simplicity l < q and n = m · q

1. max1≤k≤n−1 rank Tn(k + 1: n, 1: k) ≤ q

2. Tn can be partitioned in a block form as

Tn = (T
(n)
i ,j )mi ,j=1, T

(n)
i ,j ∈ Rq×q,

T
(n)
i ,j = A · F q(i−j−1)

a · B, i ≥ j , Fa = compan(zqa(z−1))

3. the matrix Pn = Bn · Tn · BT
n is a symmetric block tridiagonal

matrix, where

Bn =


Iq

−Σ
.. .
. . .

. . .

−Σ Iq

 , Σ = A−1F q
a A
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The Tridiagonal Reduction Algorithm

1. U ·
[

Iq
Σ

]
=

[
R
0

]
, G = I(m−2)q ⊕ U

2. the multiplication G · B−1
n creates a bulge

G·B−1
n =

 ? 0

Σm−2R . . . ΣR
0 . . . 0

I2q

·Z , Z = (I(m−2)q⊕
[

R U1,2

0 U2,2

]

3. the multiplication Z · Pn · ZT creates a bulge in the block
tridiagonal structure of Pn

4. this bulge can be chased away by a block Givens
transformation which commutes with the first factor of G ·B−1

n

I Overall complexity O(m2q3) = O(n2q) flops
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Givens-weight Representations

1. Givens part: An orthogonal matrix Q such that

QT · Tn = R

where R is lower banded with q subdiagonals. Since

QTTn = (TaQ)−1Tp + (TpQ)TT−T
a

Q is the product of (block) Givens transformations
determined to convert Ta into upper triangular form

2. Weight part: Elements generated in the factorization around
the main diagonal needed to reconstruct the lower part of Tn

from Tn = Q · R
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The Tridiagonal Reduction Algorithm

1. Annihilate the Givens part by multiplying R on the right and
on the left by the factors of Q.

2. At intermediate steps the process generates bulges into the
band profile of R which can be chased away by standard
techniques.

3. As result, at the very end Tn is transformed by orthogonal
similarity to banded form with bandwidth q

I Overall complexity O(m2q3) = O(n2q) flops
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Numerical Experiments

I We have compared the Matlab implementations of our
algorithms

1. alg 1 uses the block quasiseparable representation to
tridiagonalize Tn

2. alg 2 uses the Givens-weight representation to tridiagonalize Tn

I For comparison, Tn is first determined by
evaluation-interpolation schemes and then its eigenvalues are
computed by the eig function
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Numerical Tests

I Example 1

Tn = (0.5|i−j|)ni,j=1, . t(z) =
0.75

(1− 0.5z)(1− 0.5z−1)

I Example 2

t(z) =
z−2 − 3.5z−1 + 1.5− 3.5z + z2

a(z)a(z−1)
, a(z) = (1−0.1z)(1−0.2z)

I Example 3

t(z) =
z−3 − z−2 + 2z−1 + 1 + 2z − z2 + z3

a(z)a(z−1)
, a(z) = 1−0.4z−0.47z2+0.21z3
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Numerical Results by alg 1

n Example 1 Example 2 Example 3

10 1.0× 10−15 6.4× 10−16 1.6× 10−15

50 2.0× 10−15 1.2× 10−15 3.2× 10−15

100 4.1× 10−15 1.7× 10−15 3.3× 10−15

500 1.4× 10−14 3.5× 10−15 1.0× 10−14

1000 2.3× 10−14 5.6× 10−15 1.6× 10−14

Table: Numerical results generated by alg 1 for example 1, 2, 3.
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Numerical Results by alg 2

n Example 1 Example 2 Example 3

10 5.2× 10−16 6.6× 10−16 1.3× 10−15

50 1.1× 10−15 1.3× 10−15 2.6× 10−15

100 1.4× 10−15 1.2× 10−15 4.1× 10−15

500 1.7× 10−15 4.1× 10−15 8.2× 10−15

1000 1.6× 10−15 4.0× 10−15 1.8× 10−15

Table: Numerical results generated by alg 2 for example 1, 2, 3.
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Some Harder Tests

I Try with larger values of q

I Try for different distribution of the zeros of a(z). This affects
the conditioning of the Jury matrix

1. Case 1: q = 20 and the zeros of a(z) are approximately
uniformly distributed around the unit circle;

2. Case 2: q = 20 and some zeros are clustered but there are
still zeros at both the sides of the unit circle;

3. Case 3: q = 20 and all the zeros are located at one side of the
unit circle.
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Numerical Results by alg 1

n Case 1 Case 2 Case 3

100 1.3× 10−15 5.7× 10−13 8.0× 10−4

500 4.8× 10−15 5.6× 10−13 1.3× 10−3

1000 5.3× 10−15 5.6× 10−13 1.4× 10−3

κ(J ) 7.5× 100 1.6× 104 1.6× 1011

Table: Numerical results generated by alg 1 for Example q = 20 in the
three different cases.
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Numerical Results by alg 2

n Case 1 Case 2 Case 3

100 1.6× 10−15 1.1× 10−13 2.0× 10−4

500 3.0× 10−15 1.3× 10−13 4.9× 10−4

1000 7.5× 10−15 1.7× 10−13 6.3× 10−4

κ(J ) 7.5× 100 1.6× 104 1.6× 1011

Table: Numerical results generated by alg 2 for Example q = 20 in the
three different cases.
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Conclusions and Future Work

I The eigenvalue algorithms are fast and as accurate as the
computation of the rank structure from the Toeplitz symbol

I The accuracy is comparable for both representations

I Timing comparisons for practical efficiency

I Extensions to generalized eigenvalue problem and block
Toeplitz matrices
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