Structured Linear Algebra Problems:
Analysis, Algorithms, and Applications

Cortona, Italy - September 15-19, 2008

Structured matrices in nonlinear imaging

Claudio Estatico
Department of Mathematics and Informatics
University of Cagliari, Italy

Joint work with:
F. Di Benedetto (Dep. of Mathematics, University of Genova);
J. G. Nagy (Dep. of Mathematics and Computer Science, Emory University);
G. Bozza, M. Pastorino and A. Randazzo (Dep. of Biophysical and Electronic
Engineering, University of Genova).



Outline

[ - Nonlinear Inverse Problems in imaging (linear vs nonlinear case).
[T- The block matrix of the linearization iterative scheme.

I1I - Exploiting the structure of the blocks:
direct and iterative regularization blocks methods.

IV - A three-level block splitting iterative regularization algorithm.
V - SuperResolution post-processing enhancement.

VI - Numerical results.



Inverse Problem

By the knowledge of some “observed” data y (i.e., the effect),

find an approximation of some model parameters x (i.e., the cause).

Usually, inverse problems are ill-posed, they need regularization technique.

NonLinear Inverse Problem

Given the data y € Y, find (an approximation of) the unknown z € X
such that
Alz) =y
where A : X — Y is a nonlinear operator (Fréchet differentiable),
between the Hilbert spaces X and Y.



A nonlinear inverse problem:
The Microwave Inverse Scattering (nonlinear imaging)

y

[nput: scattered electromagnetic field on €25, (observation domain).
Output: dielectric properties, i.e. the object, in €2, (investigation domain).
The model leads to a nonlinear integral equation -particles’ interaction-.

Features: very low degree of invasivity; provide information about the dielec-
tric properties (instead of density); microwave cheap and easy to generate.
Applications: medical imaging, nondestructive evaluations of materials, sub-
surface prospecting,...



Linear Imaging vs Nonlinear Imaging

Inverse problem in Imaging: to reconstruct the true image x from the know-
ledge of the acquired image A(x), where A is an integral operator.

Linear imaging (Image Deblurring)

(Ax)(r) = /Q G(r —r)a(r') dr’

Vr € (., 1.e. the 2D investigation domain.

Nonlinear imaging (Inverse Scattering)

(A())(r) = /Q - Gl =) (N (@) () dr’

Vr € (s, 1.6. the 2D observation domain, where N is a nonlinear functional
(sometimes not completely known).
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Microwave Inverse Scattering

Forward non-linear integral operator A : D — E, where D = L?(R?) the
Dielectric permittivity, and E = L?(IR?) the scattered Electric field,

A = [ 6l =) A + tine ] )

Vr &€ QObS'

X € D is the scatterer (i.e., the unknown to retrieve),
A(x) is the scattered field, unknown in €2;,,,,
Uine 18 the incident field, known everywhere, GG is the known integral kernel.

Inverse Scattering Problem

INPUT: the scattered field ugqqt = A(x) on the observation domain 2,
OUTPUT: the scattering potential y in the investigation domain {2;,,,,

by solving of the nonlinear equation  A(y) = ugcat



Coupled formulation for both scatterer and scattered field

SINCE Utor = Uscat + Uine 18 NOL known inside the investigation domain €2,
we have to consider it as unknown too (together with the actual unknown y
to retrieve). We obtain two coupled integral equations.

In the observation domain ;. (i.e., measured data):

/Q G(r — 1) upor(r") x (") dr’ = wgeqr(r) Vr € Qups-

Mmu

In the investigation domain {2;,,,:

Utot(r) — /Q G(T — Tl) utOt(T/) X(T/> dr' = uinc(r) Vr € Qine-

v

Remarks The apparatus is rotated (multiple views), in order to provide
different acquisitions of ugeqt onto €2,p¢. In the model we have to consider an
index p =1, ..., P related to the particular view.



Full Formulation for both scatterer and scattered field

By introducing the nonlinear operator A defined as

/ meU r—r') u%Ot(r’ ) x(r") dr’ \
1 P mev ut};t( /) X<7J) dr’
AUtop, - - Upops X)(T) = L o
upor(r) = Jo, GO — 1) ufo,(r') x (") dr
\ul{;t meU r—r') uit(r’ ) x (1) dr’ /
1
and the data vector b = ( Uy - - - ,usiat, u%nc, e ,u5w> :

the inverse scattering problem becomes:

find xy € L*(Qy,y) and uy € L*(Qipy), s = 1,..., P, such that

| P
Altgot; - - Ugot; X) = b



The computation of the Fréchet Derivative for linearization

The Fréchet Derivative of the operator A at the point x is the linear operator
Al X — Y such that A(z + h) = A(z) + ALk + O(||h||?) .

The linearization gives rise to the sparse and structured matrix:

(A 0 0 Ay
0 Ayo - : Ay 2
: . . 0
Al — 0 Ax,P Au,P
: 0
\ 0 ... 0 I-A, —A, p)

where the linear operators {Auiti=1.. P 1A i= 1,...,p, and Ay are
meU r— ") x(r") h(r") dr’ r e Qobs

)
fQ G(r — ") h(r' >ut0t( rdr'  re Qobs
me r— ") x(r") h(r") dr’ r € Qinv



In such problems, the dimensions of the matrices are extremely large in ge-
neral. Here we have:

e . X n discretization of €2;,,,,
e m receivers on {2 p
o P =S5 F, where S is the number of views (rotations of the apparatus) and

F' the number of illuminations (different frequencies of the incident wave)

The size of the matrix A/, is
(P(m+n?) x (P +1)n*)

Real example: Data from Institut Fresnel, Marseille:
m =241, S =18, F =9 (diameter of ) isabout 3m., P = S-F = 164).

With a (small) n x n = 64 x 64 discretization, A’, is 7.0 - 10° x 6.7 - 10°
With n x n = 1024 x 1024, A’ is about 2 - 10% x 2 - 10°,



Exploiting the structure of the blocks (I)

Any block matrix of A’ is a linear operators like

(Sh)r)= / s(r,7) h(r") dr’,
Qinv

where the integral kernel s is always known and is given by the product of the

shift invariant kernel G times a fixed function depending on x.

This kind of operators is related to Toeplitz-like X diagonal matrices.
In particular, S h needs to be evaluated for
e cither the investigation domain r € £2;,,,,

e or the observation domain r € {2 ..

Since Q;y,, and Q¢ are different, then A’ is a submatrix (i.e., a Low Rank
Extracted System) of a block matrix with Toeplitz-times-diagonal blocks.



Exploiting the structure of the blocks (II)

How can we efficiently compute any matrix-vector product Sh?

To use FFT-based matrix product, the matrix A/, must be embedded in a
full block matrix with Toeplitz-times-diagonal blocks (related to a rectangular
discretization domain containing both €2;,,,, and €2,p).

Does the FF'T-based matrix product really reduce the numerical complexity
in real applications?

For the blocks related to €1, the answer is negative, since usually {2, 1s
far from €2, p.

For the blocks related to (;,,,, the answer is positive. In particular, here the
use of the anti-reflective matrix algebra can be usetul for some application such
as subsurface prospecting (see the next talk...).



Dealing with the least square equation

Any linearization step, the least square equation to regularize gives rise to

the following arrow block-matrix

[ 1\

o Mo Vo
ES

E=A A, = :
Mp Vp

\ Vi V5. VE O

where any block is the sum of products of structured matrices.

Solving schemes for any linearized step:

I Regularized Direct Blocks methods
Block Cholesky Factorization with Tikhonov regularization

II Regularizing Iterative Blocks methods
Block Decomposition with regularizing iterative solution of any block system



Regularized Direct Blocks methods

Tikhonov regularized linear system (A’ A" + ul)h = A."r. )
The Block Cholesky factorization of the block arrow matrix Ag?*A;; + ul
does not produce fill-in. Thus, we have

~ %
ALAL +ul = LL*
Ly \
(b
L = , Where
Lp
\ Ly Ly ... Lp L)
o Ly is the Cholesky factor of My + pul = LyLy, forp=1,..., P;
of)p is the full matrix lA}p: VpL];*7 forp=1,..., P
o f)o is the Cholesky factor of C' — 25:1 ﬁpﬁ; + ul .
Overall cost: (8P + 1)n°/6 + O(Pn?).




Regularizing Iterative Blocks methods

Block splitting of the linear system A’"A/.h = A" *r
A =M — N on the block level
MY —p — N fort =012, ...

Block Jacobi M = BlockDiag(A;*A;)
Block Gauss-Seidel M = BlockTril(A’x*Agj)

Block-arrow matrices are 2-cyclic and consistently ordered, then
Gauss-Seidel is doubly faster than Jacobi, since o(Bg) = (o(B))? .

Any iteration of the block splitting method requires the solution of P+1 small
structured system blocks of n? x n? elements. To solve these inner systems,
we adopt iterative regularization methods.



Three nested-levels iterative regularization algorithm
for structured block matrices

I- Outer Iterations: (Gauss-Newton Method

Let 3 = 0 and x( be the initial guess. Compute the derivative A;j, and find
a regularized solution of the linear system

"% gl "x

ijijhj = ij (b — A(xj))

by means of the nested iterations II-111.
Then update x ;41 = x; + hj, until a stopping rule (discrepancy principle,
GCV, ...) holds true.

[I- Inner Iterations: Block level /
Compute a block splitting of the arrow matrix A.*A’. and solve the related
steps by means of the nested iterations III.

[II- Inner Iterations: Nested level
Compute a regularized solution of each inner block system, involving (each
time only few) M;,V;,C, for j = 1,..., P, with fast techniques of struc-
tured numerical linear algebra.




Improving the quality of the output image:
SuperResolution postprocessing techniques

Nowadays dense discretizations are still computationally very expensive.

SuperResolution: from a set of Low-Resolution (LR) images to a (better)
High-Resolution (HR) image.

SuperResolution is the following linear inverse problem:
given a set of M Low-Resolution images x; (i.e., the input), find the High-
Resolution image yx (i.e., the output) such that

x; = DS;x + n; v=1,..., M
e [ is the decimation matrix that transform a [n X [n into a n X n image,

e 5; is the i-th geometric distortion (i.e., shift and rotation) of y; with
respect to a reference image,

e 7); is the noise on the 7-th LR image.



The reconstruction problem for super-resolution amounts to computing y
from the inverse problem

() (DS fm

1 1
XEQ D:g2 Y+ 772
\xr/ \Ds: ) \n)

The problem is ill-posed, and a regularization procedure for the least square
solution 1is required.

In our implementation, we use the Landweber method with projection on
positives.



Numerical results

y

Frequency: F' =15 (0.6 + 2 GHz, step 0.1 GHz, wavelength 50 = 15 cm).
Views: V' = 8 (the apparatus is 8 times rotated by 27/8).

Measurement points: M = 241 points equispaced on (2;,,,,, radius 1.67 m.

Investigation domain: square with side of 1 m., discretization of 31 x 31 cells.
Noise: Gaussian with 0 mean, SNR=20dB, Relative noise=10%.

Initial guess: empty scene.

Gauss-Newton steps: 10.
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L- Two identical homogeneous circular cylinders of diameter D = 0.2 m and
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spectively. Restoration errors: 6.7%.

R- One circular homogeneous cylinder, diameter 0.6 m., contrast y = 0.4, with
a square hole centered in r = (—0.1,0.1) and side 0.2 m. Restoration errors:

6.1%.
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SuperResolution
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Open Problems

e The blocks of the Fréchet are highly correlated (different rotations and il-
luminations). This is not yet considered in the solving scheme.

e Theoretically, it is not proved that iterative block splitting methods with
inner regularization yield to regularization algorithms for nonlinear inverse
problems.

e By an applicative point of view, the microwave imaging research is in a
pioneer stage. Numerical results are still poor.
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