The Antireflective algebra and applications

M. Donatelli
Università dell'Insubria

Collaborators:
A. Aricò, J. Nagy, and S. Serra-Capizzano

Outline

(1) The model problem (signal deconvolution)
(2) Antireflective Boundary Conditions

The $\mathcal{A R}$ algebra
The spectral decomposition
(3) Regularization by filtering
(4) Numerical results

Outline

(1) The model problem (signal deconvolution)
(2) Antireflective Boundary Conditions The $\mathcal{A R}$ algebra The spectral decomposition
(3) Regularization by filtering
(4) Numerical results

The model problem

- Problem: to approximate $f: \mathbb{R} \rightarrow \mathbb{R}$ from a blurred $g: \mathcal{I} \rightarrow \mathbb{R}$

$$
g(x)=\int_{\mathcal{I}} k(x-y) f(y) \mathrm{d} y, \quad x \in \mathcal{I} \subset \mathbb{R}
$$

the point spread function (PSF) k has compact support.

- Discretizing the integral by a rectangular quadrature rule and imposing boundary conditions:

$$
A \mathbf{f}=\mathbf{g}+\text { noise }
$$

- The structure of A depends on k and the imposed boundary conditions.

Boundary conditions

Structure of the coefficient matrix A

Type	Generic PSF	Symmetric PSF
Zero Dirichlet	Toeplitz	Toeplitz
Periodic	Circulant	Circulant
Reflective	Toeplitz + Hankel	Cosine
Antireflective	Toeplitz + Hankel + rank 2	Sine $+\ldots=$ Antireflective

Outline

(1) The model problem (signal deconvolution)

(2) Antireflective Boundary Conditions

The $\mathcal{A R}$ algebra
The spectral decomposition
(3) Regularization by filtering
(4) Numerical results

Definition of antireflective BCs

- The 1D antireflection is obtained by

$$
\begin{aligned}
f_{1-j} & =2 f_{1}-f_{j+1} \\
f_{n+j} & =2 f_{n}-f_{n-j}
\end{aligned}
$$

[Serra-Capizzano, SISC. '03]

- In the multidimensional case we perform an antireflection with respect to every edge $\quad \Longrightarrow$ Tensor structure in the multidimensional case.

Approximation property

The reflective BCs assure the continuity at the boundary, while the antireflective BCs assure also the continuity of the first derivative.

Structural properties

- $A=$ Toeplitz + Hankel + rank 2.
- Matrix vector product in $O(n \log (n))$ ops.

Symmetric PSF

- $S \in \mathbb{R}^{(n-2) \times(n-2)}$ diagonalizable by discrete sine transforms (DST)

$$
A=\left[\begin{array}{ccc}
1 & & \\
* & & * \\
\vdots & S & \vdots \\
* & & * \\
& & 1
\end{array}\right]
$$

The $\mathcal{A R}$ algebra

With h cosine real-valued polynomial of degree at most $\mathrm{n}-3$

$$
A R_{n}(h)=\left[\begin{array}{ccc}
h(0) & & \\
\mathbf{v}_{n-2}(h) & \tau_{n-2}(h) & J \mathbf{v}_{n-2}(h) \\
& & h(0)
\end{array}\right]
$$

where J is the flip matrix and

- $\tau_{n-2}(h)=Q \operatorname{diag}(h(\mathbf{x})) Q$, with Q being the DST and $\mathbf{x}=\left[\frac{j \pi}{n-1}\right]_{j=1}^{n-2}$
- $\mathbf{v}_{n-2}(h)=\tau_{n-2}(\phi(h)) \mathbf{e}_{1}$, with $[\phi(h)](x)=\frac{h(x)-h(0)}{2 \cos (x)-2}$.

$$
\mathcal{A} \mathcal{R}_{n}=\left\{A \in \mathbb{R}^{n \times n} \mid A=A R_{n}(h)\right\}
$$

Properties of the $\mathcal{A} \mathcal{R}_{n}$ algebra

Computational properties:

- $\alpha A R_{n}\left(h_{1}\right)+\beta A R_{n}\left(h_{2}\right)=A R_{n}\left(\alpha h_{1}+\beta h_{2}\right)$,
- $A R_{n}\left(h_{1}\right) A R_{n}\left(h_{2}\right)=A R_{n}\left(h_{1} h_{2}\right)$,

Diagonalization

- $\mathcal{A} \mathcal{R}_{n}$ is commutative, since $h=h_{1} h_{2} \equiv h_{2} h_{1}$,
- the elements of $\mathcal{A} \mathcal{R}_{n}$ are diagonalizable and have a common set of eigenvectors.
- not all matrices in $\mathcal{A} \mathcal{R}_{n}$ are normal.

$A R_{n}(\cdot)$ Jordan Canonical Form

Theorem
Let h be a cosine real-valued polynomial of degree at most $n-3$. Then

$$
A R_{n}(h)=T_{n} \operatorname{diag}(h(\hat{\mathbf{x}})) T_{n}^{-1}
$$

where $\hat{\mathbf{x}}=\left[0, \mathbf{x}^{T}, 0\right]^{T}, \mathbf{x}=\left[\frac{j \pi}{n-1}\right]_{j=1}^{n-2}$ and

$$
T_{n}=\left(1-\frac{\tilde{\mathbf{x}}}{\pi}, \sin (\tilde{\mathbf{x}}), \ldots, \sin ((n-2) \tilde{\mathbf{x}}), \frac{\tilde{\mathbf{x}}}{\pi}\right)
$$

with $\tilde{\mathbf{x}}=\left[0, \mathbf{x}^{T}, \pi\right]^{T}$.

Computational issues

- Inverse antireflective transform T_{n}^{-1} has a structure analogous to T_{n}.
- The matrix vector product with T_{n} and T_{n}^{-1} can be computed in $O(n \log (n))$, but they are not unitary.
- The eigenvalues are mainly obtained by DST.
- $h(0)$ with multiplicity 2
- DST of the first column of $\tau_{n-2}(h)$

Outline

(1) The model problem (signal deconvolution)

(2) Antireflective Boundary Conditions The $\mathcal{A R}$ algebra The spectral decomposition
(3) Regularization by filtering

(4) Numerical results

Antireflective $B C s$ and $\mathcal{A R}$ algebra

If the PSF is symmetric, imposing antireflective BCs the matrix A belongs to $\mathcal{A R}$.

A possible problem
The $\mathcal{A R}$ algebra is not closed with respect to transposition.

Spectral properties

- Large eigenvalues are associated to lower frequencies.
- $h(0)$ is the largest eigenvalue and the corresponding eigenvector is the sampling of a linear function.
- Hanke et al. in [SISC '08] firstly compute the components of the solution related to the two linear eigenvectors and then regularize the inner part that is diagonalized by DST.

Regularization by filtering

- $A=T_{n} D_{n} T_{n}^{-1}$ where $\mathbf{d}=h(\hat{\mathbf{x}})$ and

$$
T_{n}=\left[\begin{array}{lll}
\mathbf{t}_{1} & \cdots & \mathbf{t}_{n}
\end{array}\right], \quad D_{n}=\operatorname{diag}(\mathbf{d}), \quad T_{n}^{-1}=\left[\begin{array}{c}
\tilde{\mathbf{t}}_{1}^{T} \\
\vdots \\
\tilde{\mathbf{t}}_{n}^{T}
\end{array}\right]
$$

- A spectral filter solution is given by

$$
\begin{equation*}
\mathbf{f}_{\mathrm{reg}}=\sum_{i=1}^{n} \phi_{i} \frac{\tilde{\mathbf{t}}_{i}^{T} \mathbf{g}}{d_{i}} \mathbf{t}_{i} \tag{1}
\end{equation*}
$$

where \mathbf{g} is the observed image and ϕ_{i} are the filter factors.

Filter factors

- Truncated spectral value decomposition (TSVD)

$$
\phi_{i}^{\mathrm{tsvd}}= \begin{cases}1 & \text { if } d_{i} \geq \delta \\ 0 & \text { if } d_{i}<\delta\end{cases}
$$

- Tikhonov regularization

$$
\phi_{i}^{\mathrm{tik}}=\frac{d_{i}^{2}}{d_{i}^{2}+\alpha}, \quad \alpha>0
$$

- Imposing $\phi_{1}=\phi_{n}=1$, the solution $\mathbf{f}_{\text {reg }}$ is exactly that obtained by the homogeneous antireflective BCs in [Hanke et al. SISC '08].

Reblurring

Filtering with the Tikhonov filter $\phi_{i}^{\text {tik }}$ is equivalent to solve

$$
\left(A^{2}+\alpha l\right) \mathbf{f}_{\text {reg }}=A \mathbf{g}
$$

- This is the reblurring approach where for a symmetric PSF A^{T} is replace by A itself [D. and Serra-Capizzano, IP '05].
- In the general case (nonsymmetric PSF), the reblurring replace the transposition with the correlation.
- Reblurring is equivalent to regularize the continuous problem and then to discretize imposing the boundary conditions.

Outline

(1) The model problem (signal deconvolution)

(2) Antireflective Boundary Conditions The $\mathcal{A R}$ algebra The spectral decomposition
(3) Regularization by filtering
(4) Numerical results

Tikhonov regularization

- Gaussian blur
- 1% of white Gaussian noise

Restored images.

Best restoration errors

Relative restoration error defined as $\|\hat{\mathbf{f}}-\mathbf{f}\|_{2} /\|\mathbf{f}\|_{2}$, where $\hat{\mathbf{f}}$ is the computed approximation of the true image \mathbf{f}.

noise	Reflective	Antireflective
10%	0.1284	0.1261
1%	0.1188	0.1034
0.1%	0.1186	0.0989

1D Example (Tikhonov with Laplacian)

Restored signals

Relative restoration errors

M. Donatelli (Università dell'Insubria)

The Antireflective algebra
$25 / 27$

Conclusions

Summarizing

- The antireflective have the same computationally properties of the reflective boundary conditions but usually lead to better restorations.
- The importance of to have good boundary conditions increases when the PSF has a large support and the noise is not huge.

Work in progress ...

- Other applications (other regularization methods, filtering for trend estimation of time series, ...).
- Theoretical analysis of the reblurring strategy.

Download

At my home-page:
http://scienze-como.uninsubria.it/mdonatelli/
Matlab AR package, preprints, slides, ...

