The Antireflective algebra and applications

M. DONATELLI Università dell'Insubria

Collaborators: A. Aricò, J. Nagy, and S. Serra-Capizzano

1 The model problem (signal deconvolution)

2 Antireflective Boundary Conditions The AR algebra The spectral decomposition

3 Regularization by filtering

4 Numerical results

Outline

1 The model problem (signal deconvolution)

2 Antireflective Boundary Conditions The AR algebra The spectral decomposition

8 Regularization by filtering

4 Numerical results

The model problem

• Problem: to approximate $f:\mathbb{R}\to\mathbb{R}$ from a blurred $g:\mathcal{I}\to\mathbb{R}$

$$g(x) = \int_{\mathcal{I}} k(x-y) f(y) \mathrm{d}y, \qquad x \in \mathcal{I} \subset \mathbb{R},$$

the point spread function (PSF) k has compact support.

• Discretizing the integral by a rectangular quadrature rule and imposing boundary conditions:

$$A\mathbf{f} = \mathbf{g} + \text{noise}.$$

• The structure of A depends on k and the imposed boundary conditions.

Boundary conditions

Structure of the coefficient matrix A

Туре	Generic PSF	Symmetric PSF
Zero Dirichlet	Toeplitz	Toeplitz
Periodic	Circulant	Circulant
Reflective	Toeplitz + Hankel	Cosine
Antireflective	Toeplitz + Hankel	$Sine + \ldots =$
	+ rank 2	Antireflective

Outline

The model problem (signal deconvolution)

2 Antireflective Boundary Conditions The AR algebra The spectral decomposition

3 Regularization by filtering

4 Numerical results

Definition of antireflective BCs

• The 1D antireflection is obtained by

$$f_{1-j} = 2f_1 - f_{j+1} f_{n+j} = 2f_n - f_{n-j}$$

[Serra-Capizzano, SISC. '03]

Approximation property

The reflective BCs assure the continuity at the boundary, while the antireflective BCs assure also the continuity of the first derivative.

Structural properties

- A = Toeplitz + Hankel + rank 2.
- Matrix vector product in $O(n \log(n))$ ops.

Symmetric PSF

• $S \in \mathbb{R}^{(n-2) imes (n-2)}$ diagonalizable by discrete sine transforms (DST)

$$A = \begin{bmatrix} 1 & & & \\ * & & * \\ \vdots & 5 & \vdots \\ * & & * \\ & & 1 \end{bmatrix}$$

The \mathcal{AR} algebra

With h cosine real-valued polynomial of degree at most n-3

$$AR_n(h) = \begin{bmatrix} h(0) \\ \mathbf{v}_{n-2}(h) & \tau_{n-2}(h) & J\mathbf{v}_{n-2}(h) \\ & h(0) \end{bmatrix},$$

where J is the flip matrix and

• $\tau_{n-2}(h) = Q \operatorname{diag}(h(\mathbf{x}))Q$, with Q being the DST and $\mathbf{x} = [\frac{j\pi}{n-1}]_{i=1}^{n-2}$

•
$$\mathbf{v}_{n-2}(h) = \tau_{n-2}(\phi(h))\mathbf{e}_1$$
, with $[\phi(h)](x) = \frac{h(x)-h(0)}{2\cos(x)-2}$.

$$\mathcal{AR}_n = \{A \in \mathbb{R}^{n \times n} \mid A = AR_n(h)\}$$

Properties of the \mathcal{AR}_n algebra

Computational properties:

- $\alpha AR_n(h_1) + \beta AR_n(h_2) = AR_n(\alpha h_1 + \beta h_2),$
- $AR_n(h_1)AR_n(h_2) = AR_n(h_1h_2),$

Diagonalization

- \mathcal{AR}_n is commutative, since $h = h_1 h_2 \equiv h_2 h_1$,
- the elements of \mathcal{AR}_n are diagonalizable and have a common set of eigenvectors.
- not all matrices in \mathcal{AR}_n are normal.

$AR_n(\cdot)$ Jordan Canonical Form

Theorem

Let h be a cosine real-valued polynomial of degree at most n-3. Then

$$AR_n(h) = T_n \operatorname{diag}(h(\hat{\mathbf{x}}))T_n^{-1},$$

where $\hat{\mathbf{x}} = [0, \mathbf{x}^T, 0]^T$, $\mathbf{x} = [\frac{j\pi}{n-1}]_{j=1}^{n-2}$ and

$$T_n = \left(1 - \frac{\tilde{\mathbf{x}}}{\pi}, \sin(\tilde{\mathbf{x}}), \ldots, \sin((n-2)\tilde{\mathbf{x}}), \frac{\tilde{\mathbf{x}}}{\pi}\right),$$

with $\tilde{\mathbf{x}} = [0, \mathbf{x}^T, \pi]^T$.

Computational issues

- Inverse antireflective transform T_n^{-1} has a structure analogous to T_n .
- The matrix vector product with T_n and T_n^{-1} can be computed in $O(n \log(n))$, but they are not unitary.
- The eigenvalues are mainly obtained by DST.
 - *h*(0) with multiplicity 2
 - DST of the first column of $\tau_{n-2}(h)$

Outline

The model problem (signal deconvolution)

2 Antireflective Boundary Conditions The AR algebra The spectral decomposition

3 Regularization by filtering

4 Numerical results

Regularization by filtering

Antireflective BCs and \mathcal{AR} algebra

If the PSF is symmetric, imposing antireflective BCs the matrix A belongs to \mathcal{AR} .

A possible problem

The \mathcal{AR} algebra is not closed with respect to transposition.

Spectral properties

- Large eigenvalues are associated to lower frequencies.
- *h*(0) is the largest eigenvalue and the corresponding eigenvector is the sampling of a linear function.
- Hanke et al. in [SISC '08] firstly compute the components of the solution related to the two linear eigenvectors and then regularize the inner part that is diagonalized by DST.

Regularization by filtering

•
$$A = T_n D_n T_n^{-1}$$
 where $\mathbf{d} = h(\hat{\mathbf{x}})$ and

$$T_n = \begin{bmatrix} \mathbf{t}_1 & \cdots & \mathbf{t}_n \end{bmatrix}, \quad D_n = \operatorname{diag}(\mathbf{d}), \quad T_n^{-1} = \begin{bmatrix} \mathbf{\tilde{t}}_1^T \\ \vdots \\ \mathbf{\tilde{t}}_n^T \end{bmatrix}$$

• A spectral filter solution is given by

$$\mathbf{f}_{\text{reg}} = \sum_{i=1}^{n} \phi_i \frac{\mathbf{\tilde{t}}_i^T \mathbf{g}}{d_i} \mathbf{t}_i \,, \tag{1}$$

where **g** is the observed image and ϕ_i are the filter factors.

Filter factors

• Truncated spectral value decomposition (TSVD)

$$\phi_i^{\mathsf{tsvd}} = \begin{cases} 1 & \text{if } d_i \ge \delta \\ 0 & \text{if } d_i < \delta \end{cases}$$

• Tikhonov regularization

$$\phi_i^{\mathsf{tik}} = \frac{d_i^2}{d_i^2 + \alpha} \,, \qquad \alpha > \mathsf{0},$$

• Imposing $\phi_1 = \phi_n = 1$, the solution \mathbf{f}_{reg} is exactly that obtained by the homogeneous antireflective BCs in [Hanke et al. SISC '08].

Reblurring

Filtering with the Tikhonov filter ϕ_i^{tik} is equivalent to solve

 $(A^2 + \alpha I) \mathbf{f}_{\mathsf{reg}} = A\mathbf{g}$

- This is the reblurring approach where for a symmetric PSF A^T is replace by A itself [D. and Serra-Capizzano, IP '05].
- In the general case (nonsymmetric PSF), the reblurring replace the transposition with the correlation.
- Reblurring is equivalent to regularize the continuous problem and then to discretize imposing the boundary conditions.

Outline

The model problem (signal deconvolution)

2 Antireflective Boundary Conditions The AR algebra The spectral decomposition

3 Regularization by filtering

4 Numerical results

Tikhonov regularization

- Gaussian blur
- 1% of white Gaussian noise

True image

Observed image

Restored images.

Reflective

Antireflective

Best restoration errors

Relative restoration error defined as $\|\hat{f} - f\|_2 / \|f\|_2$, where \hat{f} is the computed approximation of the true image f.

noise	Reflective	Antireflective
10%	0.1284	0.1261
1%	0.1188	0.1034
0.1%	0.1186	0.0989

Numerical results

1D Example (Tikhonov with Laplacian)

25 / 27

Conclusions

Summarizing

- The antireflective have the same computationally properties of the reflective boundary conditions but usually lead to better restorations.
- The importance of to have good boundary conditions increases when the PSF has a large support and the noise is not huge.

Work in progress ...

- Other applications (other regularization methods, filtering for trend estimation of time series, ...).
- Theoretical analysis of the reblurring strategy.

Download

At my home-page:

http://scienze-como.uninsubria.it/mdonatelli/

Matlab AR package, preprints, slides, ...

