
The Antireflective algebra and applications

M. Donatelli
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The model problem (signal deconvolution)

The model problem

• Problem: to approximate f : R → R from a blurred g : I → R

g(x) =

∫

I

k(x − y)f (y)dy , x ∈ I ⊂ R,

the point spread function (PSF) k has compact support.

• Discretizing the integral by a rectangular quadrature rule and
imposing boundary conditions:

Af = g + noise.

• The structure of A depends on k and the imposed boundary
conditions.
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The model problem (signal deconvolution)

Boundary conditions

Signal

Zero Dirichlet

Periodic

Reflective

Anti−Reflective
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The model problem (signal deconvolution)

Structure of the coefficient matrix A

Type Generic PSF Symmetric PSF

Zero Dirichlet Toeplitz Toeplitz

Periodic Circulant Circulant

Reflective Toeplitz + Hankel Cosine

Antireflective Toeplitz + Hankel Sine + . . . =
+ rank 2 Antireflective
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Antireflective Boundary Conditions
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Antireflective Boundary Conditions

Definition of antireflective BCs

• The 1D antireflection is obtained by

f1−j = 2f1 − fj+1

fn+j = 2fn − fn−j

[Serra-Capizzano, SISC. ’03]

• In the multidimensional case we perform an antireflection with respect
to every edge =⇒ Tensor structure in the multidimensional case.
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Antireflective Boundary Conditions

Approximation property

The reflective BCs assure the continuity at the boundary,
while the antireflective BCs assure also the

continuity of the first derivative.
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Antireflective Boundary Conditions

Structural properties

• A = Toeplitz + Hankel + rank 2.

• Matrix vector product in O(n log(n)) ops.

Symmetric PSF

• S ∈ R
(n−2)×(n−2) diagonalizable by discrete sine transforms (DST)

A =















1
∗ ∗
... S

...
∗ ∗

1
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Antireflective Boundary Conditions The AR algebra

The AR algebra

With h cosine real-valued polynomial of degree at most n-3

ARn(h) =





h(0)
vn−2(h) τn−2(h) Jvn−2(h)

h(0)



 ,

where J is the flip matrix and

• τn−2(h) = Qdiag(h(x))Q, with Q being the DST and x = [ jπ
n−1 ]n−2

j=1

• vn−2(h) = τn−2(φ(h))e1, with [φ(h)](x) = h(x)−h(0)
2 cos(x)−2 .

ARn = {A ∈ R
n×n | A = ARn(h)}
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Antireflective Boundary Conditions The AR algebra

Properties of the ARn algebra

Computational properties:

• αARn(h1) + βARn(h2) = ARn(αh1 + βh2),

• ARn(h1)ARn(h2) = ARn(h1h2),

Diagonalization

• ARn is commutative, since h = h1h2 ≡ h2h1,

• the elements of ARn are diagonalizable and have a common set of
eigenvectors.

• not all matrices in ARn are normal.
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Antireflective Boundary Conditions The spectral decomposition

ARn(·) Jordan Canonical Form

Theorem
Let h be a cosine real-valued polynomial of degree at most n-3. Then

ARn(h) = Tndiag(h(x̂))T−1
n ,

where x̂ = [0, xT , 0]T , x = [ jπ
n−1 ]n−2

j=1 and

Tn =
(

1 −
x̃

π
, sin(x̃), . . . , sin((n − 2)x̃),

x̃

π

)

,

with x̃ = [0, xT , π]T .
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Antireflective Boundary Conditions The spectral decomposition

Computational issues

• Inverse antireflective transform T−1
n has a structure analogous to Tn.

• The matrix vector product with Tn and T−1
n can be computed in

O(n log(n)), but they are not unitary.

• The eigenvalues are mainly obtained by DST.
• h(0) with multiplicity 2
• DST of the first column of τn−2(h)
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Regularization by filtering
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Regularization by filtering

Antireflective BCs and AR algebra

If the PSF is symmetric, imposing antireflective BCs
the matrix A belongs to AR.

A possible problem

The AR algebra is not closed with respect to transposition.
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Regularization by filtering

Spectral properties

• Large eigenvalues are associated to lower frequencies.

• h(0) is the largest eigenvalue and the corresponding eigenvector is the
sampling of a linear function.

• Hanke et al. in [SISC ’08] firstly compute the components of the
solution related to the two linear eigenvectors and then regularize the
inner part that is diagonalized by DST.
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Regularization by filtering

Regularization by filtering

• A = TnDnT
−1
n where d = h(x̂) and

Tn =
[

t1 · · · tn
]

, Dn = diag(d), T−1
n =







t̃T1
...

t̃Tn







• A spectral filter solution is given by

freg =

n
∑

i=1

φi

t̃Ti g

di

ti , (1)

where g is the observed image and φi are the filter factors.
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Regularization by filtering

Filter factors

• Truncated spectral value decomposition (TSVD)

φtsvd
i =

{

1 if di ≥ δ
0 if di < δ

• Tikhonov regularization

φtik
i =

d2
i

d2
i + α

, α > 0,

• Imposing φ1 = φn = 1, the solution freg is exactly that obtained by
the homogeneous antireflective BCs in [Hanke et al. SISC ’08].
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Regularization by filtering

Reblurring

Filtering with the Tikhonov filter φtik
i is equivalent to solve

(A2 + αI ) freg = Ag

• This is the reblurring approach where for a symmetric PSF AT is
replace by A itself [D. and Serra-Capizzano, IP ’05].

• In the general case (nonsymmetric PSF), the reblurring replace the
transposition with the correlation.

• Reblurring is equivalent to regularize the continuous problem and
then to discretize imposing the boundary conditions.
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Numerical results
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Numerical results

Tikhonov regularization

• Gaussian blur

• 1% of white Gaussian noise

True image Observed image
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Numerical results

Restored images.

Reflective Antireflective
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Numerical results

Best restoration errors

Relative restoration error defined as ‖f̂ − f‖2/‖f‖2,
where f̂ is the computed approximation of the true image f.

noise Reflective Antireflective

10% 0.1284 0.1261
1% 0.1188 0.1034
0.1% 0.1186 0.0989
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Numerical results

1D Example (Tikhonov with Laplacian)
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Numerical results

Conclusions

Summarizing

• The antireflective have the same computationally properties of the
reflective boundary conditions but usually lead to better restorations.

• The importance of to have good boundary conditions increases when
the PSF has a large support and the noise is not huge.

Work in progress ...

• Other applications (other regularization methods, filtering for trend
estimation of time series, . . . ).

• Theoretical analysis of the reblurring strategy.
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Numerical results

Download

At my home-page:

http://scienze-como.uninsubria.it/mdonatelli/

Matlab AR package, preprints, slides, . . .
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