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The use of the complex exponential model

This model is ubiquitous in digital signal processing applications:

m Nuclear magnetic resonance (NMR) spectroscopy,
m audio processing,

m speech processing,

m material health monitoring,

m shape from moments



The complex exponential model

Overvi : : : “;./,,M— =
verview The discrete-time model has the following form: \,///

Introduction -~

The use of the

complex exponential K

model

In — Z aj exp{jgpk} exp{(ak+2jwyk)n.At}+bn n = O, c e ,N—l,
PR k=1 | ! [ ! \

approach phase freq uency WGN (1)
Decimative method amplitude damping sampling time interval
Tensor approach factor
Simulation Results K
Conclusions Ln — Z CkZZ —+ bn n = O, ce ey N — 1, (2)
k=1
m ¢ = apexp{jor}: complex amplitudes, LA
?’
m 2, = exp{(ag + 257 ) At} signal poles. %
% it}
_ 1 0 Vk 1 f
2At 2At

L. De Lathauwer 4



:"-7="_'::

®
| Standard Matrix approach

O Starting point for a subspace representation = {x,,} is arranged in

Introduction

The use of the a Hankel matrix:

complex exponential

model
The complex ( X0 1 ) .. TN —1 \

exponential model

Standard Matrix
approach L1 L2

Decimative method _
H = To
Tensor approach
Simulation Results . . . . ITN—_9
Conclusions \ Xr,—-1 - T IN—-2 IN-1 )

L. De Lathauwer



Overview

Introduction

The use of the
complex exponential
model

The complex
exponential model

Standard Matrix
approach

Decimative method

Tensor approach

Simulation Results

Conclusions

L. De Lathauwer

Standard Matrix approach

H can be factorized as follows (noise-free case):

[ Lo
21 e 2k 1 0 1 28 2% - z{w_l \
22 22 . : . .
1 K .
; ; ; 0 - 1 1 2 M 1
. . . z z o o o
\ A T ) K K *K K /
1 K
= SCT' (3)

— Vandermonde decomposition rank-K matrix

Due to the structure of the noise-free model z,,, H is rank deficient
The rank equals the number of signal poles (model order)
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Standard Matrix approach

H can be factorized as follows (noise-free case):

= L)
z% z}( C1 O 1 z% z% z{w_l\
2 25 3 S
E : : 0 CK 1 2z 25 - % '
\zL—l ZL—l)
S 5

g —@STT

subspace-of-interest

— Vandermonde decomposition ra”k K matrix

Due to the structure of the noise-free model z,,, H is rank deficient
The rank equals the number of signal poles (model order)
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Decimation
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More structure
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Introduction

Decimative method . . d
Problem Statement Cd — dlag{cl Tt Ck} (dlag{zl R Zk})

Decimation

Teneer simmeseh The results could be better if this structure could be taken into
Simulation Results account.

Conclusions

Is any matrix decomposition able exploit the complete structure of
H 7

— limits of the traditional linear algebra !!

The whole structure can be handled using multilinear algebra
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Construction of a third-order tensor
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Higher-Order VDMD
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In the noise-free case H is a rank-K tensor

10



Overview

Introduction

Decimative method

Tensor approach
Construction of a
third-order tensor

Higher-Order VDMD

Higher-Order SVD

Dimensionality
reduction

lll-conditioning issue
Unsymmetric tensor
approximation

Summary

Simulation Results

Conclusions

L. De Lathauwer

/
/l

If 'H is n-mode rank deficient, only the shaded part of the core-tensor

contains entries different from zero.
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Dimensionality reduction

Given a complex third-order tensor H € CEXMXDP find a
rank-(K, K, K) tensor H that minimizes the least-squares cost
function

fH) = |H-H| . (3)

Due to the n-rank constraints, H can be decomposed as :

ﬁ =B o U(l) L D) U(2) o3 U(B) (4)

in which U € CE*K U ¢ MK U®) ¢ CP*K each have
orthonormal columns and B € C5*5*K s an all-orthogonal tensor.

HOOI [Kroonenberg '84, De Lathauwer '00], Newton [Eldén and
Savas '08], Quasi-Newton [Savas and Lim '08], Conjugate gradient
[Ishteva '08], Trust region [Ishteva '08], Oja [Ishteva '08], Krylov
[Savas and Eldén '08]
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lll-conditioning issue

m The theory gives us the true rank of the data tensor,

m Since there is no decimation effect along the 3" mode, the
mode-3 subspace is generally ill-conditioned
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Unsymmetric tensor approximation

Theorem (Unsymmetric tensor approximation) Consider a
tensor A € Cl'>*12XIs that s rank-(Ry, Ry, R3). Let the HOSVD of
A be given by

A=Beo; V) o, V(2 o V3

Then the best rank-(R1, R2, R3) approximation of A, with Rs < Rs,
is obtained by truncation of B and U,

e As a consequence of this theorem one can concentrate on the
dominant part of the data tensor by decreasing the mode-3 rank
without losing the data structure in the mode-1 and 2 subspace.

14
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Summary

Decimative matrix approach:
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Summary

Decimative matrix approach:

xn—>x%)—>H:[HO‘H1‘ ‘HD—l}

SV D

— H’Z UVl U =U]:,1:K]

Decimative tensor approach:

(d)

Ty — Ty —— H =

Hy

H=Be, UV oo U2 03U Best rank-(K, K, K') approx. of H

Hp 4

H, ¢ Cct»*M
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H c (CLXMXD
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Summary

Decimative matrix approach:

tn— ) — H=[Ho | H |- |Hp] im0,
— HUsvE LU =U[:,1:K]
Decimative tensor approach:

(@) D H, ¢ CLxM

L H =

ajrn EE— xm H 6 CLXMXD

2 )

H=DBe UL oy U o3 UB) Best rank- (K, K, K") approx. of H

Total least squares (TLS) solution:

[UlU | = Y(L 1)x(L—1 )szszK ~ )
W — [ Wit Wio ] —= | Z =W u3Wy,
Waor Waos
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Two closely spaced peaks, damped signal

x, = exp{(—0.01 + 2j70.2)At.n} + exp{(—0.02 + 2570.22) At.n},
withn=20,...,N — 1.

Number of samples N = 625, decimation factor D = 25, sampling
time interval At = 0.04.

| 1) @) 3)
Tensor: Higx13x25 = Baxax2 @1 Us 1302 Us 303Uy o

~ ~ ~H

Matrix: Higxso5 = Sox2 01 Usxis 2 Vi aos (= USV)

. Frequency:v = 0.22 Hz
10 T T

. Frequency:v = 0.2 Hz
10 q T T

-~tensor approach
-e-matrix approach

-tensor approach
-e-matrix approach

RRMSE [%)]
RRMSE [%]
[EEN
o

20 25 30 35 40 45 20 25 30 35 40 45
SNR [dB] SNR [dB]
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Two closely spaced peaks, undamped signal

Ty, = exp{(2jm0.2)At.n} + exp{(2770.205)At.n}, with
n=20,...,N — 1.

Number of samples N = 1000, decimation factor D = 25, sampling

time interval At = 0.1.

Tensor: Hsox50x10 = 82x2><2/1 ®1 Uglx)SO ®2 Ug2>250 *3 Ué?})lxlo

AN AN AN

_ ~ N ~ % H
Matrix: Hsgxz500 = 2ox2 1 Uaxso 09 V2><5OO (: UXV )

Frequency:v = 0.2 Hz Frequency:v = 0.205 Hz
-~tensor approach (2,2,1) 3 -+tensor approach (2,2,1)
) -e-tensor approach (2,2,2) 10; s -e-tensor approach (2,2,2) ]
10 -e-matrix approach ] . -o-matrix approach
(ITI,J) 101 L (L}J) 10 F Y
= p
o o Q
14 o
8
100 E 1017 ‘Q
_1 1 1 1 1 1 1 N
10 0 10 30 40 0 10 30 40

20
SNR [dB]
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Five-peak, damped signal 1/3

Peak k | 13, [Hz] au [sY] ar [a.u]®  or [7]°
1| -1379 208 6.1 15
2 | -685 256 9.9 15
4 | -271 197 6.0 15
3 353 117 2.8 15
5 478 808 17 15

% a.u., arbitrary units

" ) X &5 expresses the phase in radians

Tensor: ) , ;
Haex25x10 = Baxax1/2/3/4/5 ®1 Ué><)26 ®2 Ué><)25 *3 Ug/)2/3/4/5><10

. A~ A~ 3k ~ ~ ~H
Matrix: H26><250 = E5><5 o U5><26 o5 V5><25O (: Uuxyv )
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Introduction
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Conclusions

We considered oversampled signals whose poles are potentially
very close,

In the decimative matrix approach the structure is partially
taken into account,

A multilinear approach helps to reveal the rest of the structure
(e.g. HOVDMD of the (L x M x D)-tensor),

And shows a rank deficiency: H is a rank-(K, K, K) tensor,

lll-conditioned modes can be treated in a different manner than
well-conditioned modes (unsymmetric dimensionality
reduction),

The best rank-(K, K, K') with K’ < K approximation of the
noisy data tensor consistently yields a better subspace estimate
than the best rank-K approximation of the noisy data matrix.
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