
L. De Lathauwer 1

Multilinear Algebra Based Fitting of a Sum of Exponentials to
Oversampled Data

Lieven De Lathauwer
K.U.Leuven∗

Jean-Michel Papy
FMTC†/K.U.Leuven∗

Sabine Van Huffel
K.U.Leuven∗

∗Catholic University of Leuven
†Flander’s Mechatronics Technology Center (Leuven)



Overview

Overview

Introduction

Decimative method

Tensor approach

Simulation Results

Conclusions

L. De Lathauwer 2

■ Introduction

◆ The use of the complex exponential model;

◆ The complex exponential model;

◆ Standard Matrix approach;

■ Decimative method

■ Tensor approach

■ Simulation results

■ Conclusions



Overview

Overview

Introduction

Decimative method

Tensor approach

Simulation Results

Conclusions

L. De Lathauwer 2

■ Introduction

■ Decimative method

◆ Decimation;

◆ More structure;

■ Tensor approach

■ Simulation results

■ Conclusions



Overview

Overview

Introduction

Decimative method

Tensor approach

Simulation Results

Conclusions

L. De Lathauwer 2

■ Introduction

■ Decimative method

■ Tensor approach

◆ Construction of a third-order tensor;

◆ The higher-order VDMD;

◆ The Tucker Decomposition or Higher-Order SVD;

◆ Dimensionality reduction;

◆ Ill-conditioning issue

◆ Unsymmetric tensor approximation

◆ Summary

■ Simulation results

■ Conclusions



Overview

Overview

Introduction

Decimative method

Tensor approach

Simulation Results

Conclusions

L. De Lathauwer 2

■ Introduction

■ Decimative method

■ Tensor approach

■ Simulation results

◆ Two-peak, damped signal

◆ Two-peak, undamped signal

◆ Five-peak, damped signal

■ Conclusions



Overview

Overview

Introduction

Decimative method

Tensor approach

Simulation Results

Conclusions

L. De Lathauwer 2

■ Introduction

■ Decimative method

■ Tensor approach

■ Simulation results

■ Conclusions



The use of the complex exponential model

Overview

Introduction
The use of the

complex exponential

model
The complex

exponential model

Standard Matrix

approach

Decimative method

Tensor approach

Simulation Results

Conclusions

L. De Lathauwer 3

This model is ubiquitous in digital signal processing applications:

■ Nuclear magnetic resonance (NMR) spectroscopy,

■ audio processing,

■ speech processing,

■ material health monitoring,

■ shape from moments
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The discrete-time model has the following form: t

x

0 1
2∆t− 1

2∆t
fνk

xn =

K∑

k=1

ak exp{jϕk} exp{(αk+2jπνk)n.∆t}+bn n = 0, . . . , N−1,

(1)
amplitude

phase
damping
factor

frequency

sampling time interval

wgn

xn =
K∑

k=1

ckz
n
k + bn n = 0, . . . , N − 1, (2)

■ ck = ak exp{jϕk}: complex amplitudes,

■ zk = exp{(αk + 2jπνk)∆t}: signal poles.
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Starting point for a subspace representation =⇒ {xn} is arranged in
a Hankel matrix:

H =




x0 x1 x2 · · · xM−1

x1 x2

... · · ·
...

x2

...

... · · ·
...

...
...

...
... xN−2

xL−1 · · · · · · xN−2 xN−1
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H can be factorized as follows (noise-free case):

H =



1 · · · 1
z1
1 · · · z1

K

z2
1 · · · z2

K
...

...
...

zL−1
1 · · · zL−1

K







c1

. . .
0

0

cK







1 z1
1 z2

1 · · · zM−1
1

...
...

... · · ·
...

1 z1
K z2

K · · · zM−1
K




= SCT
T (3)

=⇒ Vandermonde decomposition rank-K matrix

Due to the structure of the noise-free model xn, H is rank deficient
The rank equals the number of signal poles (model order)
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H can be factorized as follows (noise-free case):

H =



1 · · · 1
z1
1 · · · z1

K

z2
1 · · · z2

K
...

...
...

zL−1
1 · · · zL−1

K







c1

. . .
0

0

cK







1 z1
1 z2

1 · · · zM−1
1

...
...

... · · ·
...

1 z1
K z2

K · · · zM−1
K




= SCT
T (3)

=⇒ Vandermonde decomposition rank-K matrix

subspace-of-interest

Due to the structure of the noise-free model xn, H is rank deficient
The rank equals the number of signal poles (model order)
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In the noise-free case, this rank deficiency is reflected by the SVD of
H:

H =




· · · · · ·

U1 · · · UK · · · UL

· · · · · ·







λ1

. . .
0

0

λK

0

0 0







V H
1

...
...

...
V H

K
...

...
...

V H
M




=
(

Û U0

)(
Σ̂ 0
0 0

)(
V̂

H

V
H
0

)
= ÛΣ̂V̂

H
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In the presence of noise H is a full rank matrix:

H =




· · · · · ·

U1 · · · UK · · · UL

· · · · · ·







λ1

. . .
0

0

λK

0

0 Σ0







V H
1

...
...

...
V H

K
...

...
...

V H
M




=
(

Û U0

)(
Σ̂ 0
0 Σ0

)(
V̂

H

V
H
0

)
= ÛΣ̂V̂

H
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If the signal poles are close (closely spaced peaks), the Vandermonde
vectors are almost dependent. Therefore, in the presence of noise, Û

might yield a very poor estimate of the column space of S.
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=⇒ The SVD of H becomes computationally expensive
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x0 x1 · · · xD−1 xD xD+1 · · · x2D−1 x2D x2D+1 · · · xN−1

x(d)
n = xnD+d =

K∑

k=1

ckz
nD+d n = 0, . . . ,

N

D
− 1, d = 0, . . . , D − 1 ,

H =
[

H0 | H1 | . . . | HD−1

]
.

H = S
[

C0T
T | C1T

T | . . . | CD−1T
T
]

= UΣV
H

S =




1 · · · 1
zD

1 · · · zD

K

z2D

1 · · · z2D

K

...
...

...

z
(LD−1)D
1 · · · z

(LD−1)D
K




Low computation cost
good accuracy
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The structure of H is more complex:

Cd = diag{c1 . . . , ck}. (diag{z1 . . . , zk})
d

The results could be better if this structure could be taken into
account.

Is any matrix decomposition able exploit the complete structure of
H ?

=⇒ limits of the traditional linear algebra !!

The whole structure can be handled using multilinear algebra
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H

=

c2

c1

c
K




1
· · ·

1
zD

1 · · ·
zD

K

(zD

1 )2
· · · (zD

K)2
...

· · · ...
(zD

1 )I1
· · · (zD

K)I1







1 zD

1 (zD

1 )2
· · · (zD

1 )I2

... ... ...
· · · ...

1 zD

K (zD

K)2
· · · (zD

K)I2







1
z1

z
2
1

· · ·
z
I3

1

...

...

...
· · ·

...

1
zK

z
2
K

· · ·
z
I3

K




H = Ĉ •1 Ŝ
(1)

•2 Ŝ
(2)

•3 Ŝ
(3)

In the noise-free case H is a rank-K tensor
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V
(3)

T
A

=

B
V (1)

V (2)T

If H is n-mode rank deficient, only the shaded part of the core-tensor
contains entries different from zero.

H = Ŝ •1 V̂
(1)

•2 V̂
(2)

•3 V̂
(3)

̂ denotes the (truncated) yellow part
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Given a complex third-order tensor H ∈ C
L×M×D, find a

rank-(K,K,K) tensor Ĥ that minimizes the least-squares cost
function

f(Ĥ) =
∥∥H− Ĥ

∥∥2
. (3)

Due to the n-rank constraints, Ĥ can be decomposed as :

Ĥ = B •1 U
(1) •2 U

(2) •3 U
(3) (4)

in which U
(1) ∈ C

L×K , U
(2) ∈ C

M×K , U
(3) ∈ C

D×K each have
orthonormal columns and B ∈ C

K×K×K is an all-orthogonal tensor.

HOOI [Kroonenberg ’84, De Lathauwer ’00], Newton [Eldén and
Savas ’08], Quasi-Newton [Savas and Lim ’08], Conjugate gradient
[Ishteva ’08], Trust region [Ishteva ’08], Oja [Ishteva ’08], Krylov
[Savas and Eldén ’08]
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■ The theory gives us the true rank of the data tensor,

■ Since there is no decimation effect along the 3rd mode, the
mode-3 subspace is generally ill-conditioned
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Theorem (Unsymmetric tensor approximation) Consider a

tensor A ∈ C
I1×I2×I3 that is rank-(R1, R2, R3). Let the HOSVD of

A be given by

A = B •1 V
(1) •2 V

(2) •3 V
(3).

Then the best rank-(R1, R2, R̃3) approximation of A, with R̃3 < R3,

is obtained by truncation of B and U
(3).

• As a consequence of this theorem one can concentrate on the
dominant part of the data tensor by decreasing the mode-3 rank
without losing the data structure in the mode-1 and 2 subspace.
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Decimative matrix approach:

xn −→ x
(d)
m −→ H =

[
H0 | H1 | · · · | HD−1

] Hn ∈ C
L×M

H ∈ C
L×M.D

−→ H
SV D
= UΣV

H −→ Û = U [ : , 1 : K]
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Decimative matrix approach:

xn −→ x
(d)
m −→ H =

[
H0 | H1 | · · · | HD−1

] Hn ∈ C
L×M

H ∈ C
L×M.D

−→ H
SV D
= UΣV

H −→ Û = U [ : , 1 : K]

Decimative tensor approach:

xn −→ x
(d)
m −→ H =

HD−1

H1

H0

Hn ∈ C
L×M

H ∈ C
L×M×D

K
′
6 K

Ĥ = B •1 U
(1) •2 U

(2) •3 U
(3) Best rank-(K,K,K ′) approx. of H
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Decimative matrix approach:

xn −→ x
(d)
m −→ H =

[
H0 | H1 | · · · | HD−1

] Hn ∈ C
L×M

H ∈ C
L×M.D

−→ H
SV D
= UΣV

H −→ Û = U [ : , 1 : K]

Decimative tensor approach:

xn −→ x
(d)
m −→ H =

HD−1

H1

H0

Hn ∈ C
L×M

H ∈ C
L×M×D

K
′
6 K

Ĥ = B •1 U
(1) •2 U

(2) •3 U
(3) Best rank-(K,K,K ′) approx. of H

Total least squares (TLS) solution:

[Û↓Û
↑
] = Y (L−1)×(L−1)ΓW

H

2K×2K

W =

[
W 11 W 12

W 21 W 22

]
=⇒

̂̃
Z = −W 12W

−1
22
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xn = exp{(−0.01 + 2jπ0.2)∆t.n} + exp{(−0.02 + 2jπ0.22)∆t.n},
with n = 0, . . . , N − 1.
Number of samples N = 625, decimation factor D = 25, sampling
time interval ∆t = 0.04.

Tensor: H13×13×25 = B2×2×2 •1 U
(1)
2×13 •2 U

(2)
2×13 •3 U

(3)
2×25

Matrix: H13×325 = Σ̂2×2 •1 Û2×13 •2 V̂
∗

2×325 (= ÛΣ̂V̂
H

)
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xn = exp{(2jπ0.2)∆t.n} + exp{(2jπ0.205)∆t.n}, with
n = 0, . . . , N − 1.
Number of samples N = 1000, decimation factor D = 25, sampling
time interval ∆t = 0.1.

Tensor: H50×50×10 = B2×2×2/1 •1 U
(1)
2×50 •2 U

(2)
2×50 •3 U

(3)
2/1×10

Matrix: H50×500 = Σ̂2×2 •1 Û2×50 •2 V̂
∗

2×500 (= ÛΣ̂V̂
H

)
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Peak k νk [Hz] αk [s-1] ak [a.u.]a ϕk [°]b

1 -1379 208 6.1 15
2 -685 256 9.9 15
4 -271 197 6.0 15
3 353 117 2.8 15
5 478 808 17 15

a a.u., arbitrary units
b ϕk × π

180 expresses the phase in radians

Tensor:
H26×25×10 = B2×2×1/2/3/4/5 •1 U

(1)
5×26 •2 U

(2)
5×25 •3 U

(3)
1/2/3/4/5×10

Matrix: H26×250 = Σ̂5×5 •1 Û5×26 •5 V̂
∗

5×250 (= ÛΣ̂V̂
H

)
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Decreasing of the mode-3 rank from 5 to 1:

5 6 7 8 9 10 11

10
1

10
2

Estimation of the frequency −1379 Hz

SNR [dB]

R
M

S
E

 [H
z]

5 6 7 8 9 10 11

10
1

10
2

Estimation of the frequency −685 Hz

SNR [dB]

R
M

S
E

 [H
z]

5 6 7 8 9 10 11

10
2

Estimation of the frequency −271 Hz

SNR [dB]

R
M

S
E

 [H
z]

5 6 7 8 9 10 11

10
2

Estimation of the frequency 353 Hz

SNR [dB]

R
M

S
E

 [H
z]

5 6 7 8 9 10 11

10
2

Estimation of the frequency 478 Hz

SNR [dB]

R
M

S
E

 [H
z]

Legend

Rank−(5,5,1) approx.

Rank−(5,5,2) approx.

Rank−(5,5,3) approx.

Rank−(5,5,4) approx.

Rank−(5,5,5) approx.
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Performance comparison to matrix algorithms:
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■ We considered oversampled signals whose poles are potentially
very close,

■ In the decimative matrix approach the structure is partially
taken into account,

■ A multilinear approach helps to reveal the rest of the structure
(e.g. HOVDMD of the (L × M × D)-tensor),

■ And shows a rank deficiency: H is a rank-(K,K,K) tensor,

■ Ill-conditioned modes can be treated in a different manner than
well-conditioned modes (unsymmetric dimensionality
reduction),

■ The best rank-(K,K,K ′) with K ′ 6 K approximation of the
noisy data tensor consistently yields a better subspace estimate
than the best rank-K approximation of the noisy data matrix.
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