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THE NORM OF THE ERROR

Ax = b

y an approximation of x and e = x− y.

We want to obtain an estimation of ‖e‖.
We set r = b−Ay. We have Ae = r and the bounds

‖r‖
‖A‖ ≤ ‖e‖ ≤ ‖A−1‖ · ‖r‖.

These bounds require the knowledge of ‖A‖ and ‖A−1‖, But
‖A−1‖ is difficult to compute, and the lower bound can be
quite a bad estimate of ‖e‖.
Estimates for the error in the conjugate gradient were given
by Golub and Meurant.
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EXTRAPOLATION

We will now obtain estimates of ‖e‖ by an extrapolation
method.

We have

c0 = (A0r,A0r) A0 A0 0 + 0 = 0

c1 = (A0r,A1r) A0 A1 0 + 1 = 1

c2 = (A1r,A1r) A1 A1 1 + 1 = 2

c−1 = (A0r,A−1r) A0 A−1 0 + (−1) = −1

c−2 = (A−1r,A−1r) A−1 A−1 (−1) + (−1) = −2

c−1 = (A0r,A−1r) = (e,Ae) A-norm of the error

c−2 = (A−1r,A−1r) = (e, e) = ‖e‖2 norm of the error
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We will interpolate the points (0, c0), (1, c1) and (2, c2) by
some function and then ....

extrapolate at the point −2.
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WHAT IS EXTRAPOLATION ?
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Which curve?

Answer: a curve which mimics the exact behavior of the ci

If the function mimics the behaviour of the ci, then its value at
−2 will be a good approximation of ‖e2

‖.

For choosing the interpolation function, we have to analyze
the behaviour of c0, c1 and c2.

So, let us now analyze this behavior.
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We consider the Singular Value Decomposition (SVD) of the
matrix A:

A = UΣV T

U = [u1, . . . , up]

V = [v1, . . . , vp]

where
UUT = V V T = I,
Σ =diag(σ1, . . . , σp) with σ1 ≥ σ2 ≥ · · · ≥ σp > 0.
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Let v be any vector. It holds

Av =
p∑

i=1

σi(vi,v)ui

AT v =
p∑

i=1

σi(ui,v)vi

A−1v =
p∑

i=1

σ−1
i (ui,v)vi.
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c0 = (r, r) = (UT r, UT r) =
p∑

i=1

α2
i , αi = (ui, r)

= (V T r, V T r) =
p∑

i=1

β2
i , βi = (vi, r)

c1 = (r,Ar) =
p∑

i=1

σiαiβi

c2 = (Ar,Ar) =
p∑

i=1

σ2
i β2

i

c−1 = (A−1r, r) = (e, Ae) =
p∑

i=1

σ−1
i αiβi

c−2 = (A−1r,A−1r) = (e, e) =
p∑

i=1

σ−2
i α2

i .

WHAT IS EXTRAPOLATION ? 9



THE FORMULA FOR EXTRAPOLATION

The function we will use for extrapolation has to mimic as
closely as possible the behavior of the ci.

So, we will keep only the first term in each of the preceding
formulae, that is we will look for α, β and σ satisfying the
interpolation conditions

c0 = α2 = β2

c1 = σαβ

c2 = σ2β2.

and then extrapolate for the values −1 and −2 of the index.
Thus, c−1 and c−2 will be approximated by

c−1 ' σ−1αβ and c−2 = ‖e‖2 ' σ−2α2.
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ESTIMATES OF THE NORM OF THE ERROR

The preceding system has 3 unknowns and 4 equations
which are not compatible. Thus, it has several solutions. For
example, we get the following e2

i which are approximations
of ‖e‖2

e2
1 = c4

1/c3
2

e2
2 = c0c

2
1/c2

2

e2
3 = c2

0/c2

e2
4 = c3

0/c2
1

e2
5 = c4

0c2/c4
1.

These estimates were numbered so that

e1 ≤ e2 ≤ e3 ≤ e4 ≤ e5.
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MORE ESTIMATES:

More estimates can be obtained by replacing c2 in all
formulae above by

c̃2 = (AT r,AT r) =
p∑

i=1

σ2
i α2

i ,

and approximating it by σ2α2.

Similar results and properties are obtained.

They will be denoted by putting a ˜ over the letters.

It holds

ẽ2
ν ≤ ‖e‖2, ∀ν ≤ 3.

The estimate ẽ3 was given by Auchmuty in 1992.
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NUMERICAL EXAMPLES:

x = A−1b is the exact solution of the linear system.

y is any approximate solution of it.

So, our estimates apply either to a direct method or to an
iterative method for the solution of a system of linear
equations.

They estimate both the rounding errors and the error of the
method.
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 BiCGSTAB: residual, error and estimate

Figure 1: BiCGSTAB for I+50*CIRCUL(100); cond(A) =101
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Figure 2: inv(I+50*circul(100)) κ = 101.0408,

‖A‖ = 4.0016 · 10−4, ‖A−1‖ = 2.5250 · 105
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A GENERALIZATION:

From here: joint work with G. Rodriguez and S. Seatzu
(University of Cagliari, Italy).

The five estimates e1, . . . , e5 can be gathered into only one
formula

e2
i = ci−1

0 (c2
1)

3−ici−4
2 , i = 1, . . . , 5.

Moreover, this formula is not only valid for i = 1, . . . , 5, but also
for any real number ν, that is

e2
ν = cν−1

0 (c2
1)3−νcν−4

2 , ν ∈ R.
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PROPERTIES:

We have

e2
ν =

(
c0c2

c2
1

)ν

·
(

c6
1

c0c4
2

)
= ρνe2

0.

So, e2
ν is an increasing function of ν in (−∞, +∞) since

ρ = (c0c2)/c2
1 ≥ 1.

Therefore, it exists νe such that e2
νe

= ‖e‖2.

This νe is given by the formula

νe = 2 ln(‖e‖/e0)/ ln ρ.

ESTIMATES OF THE NORM OF THE ERROR 17



AN APPLICATION TO REGULARIZATION

When a system is ill-conditioned, its solution cannot be
computed accurately.

Tikhonov’s regularization consists in computing the vector xλ

which minimizes the quadratic functional

J(λ, x) = ‖Ax− b‖2 + λ2‖Hx‖2

over all vectors x, where λ is a parameter, and H a given
q × p (q ≤ p) matrix.

This vector xλ is the solution of the system

(C + λ2E)xλ = AT b,

where C = AT A and E = HT H.
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If λ is close to zero, then xλ is badly computed while, if λ is far
away from zero, xλ is well computed but the error x− xλ is
quite large.

For decreasing values of λ, the norm of the error ‖x− xλ‖ first
decreases, and then increases when λ approaches 0.

Thus the error, which is the sum of the theoretical error and
the error due to the computer’s arithmetic, passes through a
minimum corresponding to the optimal choice of the
regularization parameter λ.
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Several methods have been proposed to obtain an effective
choice of λ.

The L–curve consists in plotting in log–log scale the values of
‖Hxλ‖ versus ‖rλ‖. The resulting curve is typically L–shaped
and the selected value of λ is the one corresponding to the
corner of the L. However, there are many cases where the
L–curve exhibits more than one corner, or no one at all.

The Generalized Cross Validation (GCV) searches for the
minimum of a function of λ which is a statistical estimate of
the norm of the residual. Occasionally, the value of the
parameter furnished by this method may be inaccurate
because the function is rather flat near the minimum.
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But each of these methods can fail.

We are proposing another test based on the preceding
estimates of the norm of the error.

Warning :
We don’t pretend that this new procedure never fails!!!
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There are two questions that have to be answered:

• Is xλ well computed?

For answering this question, we propose the following test.

Remember that the vector xλ is the solution of

(C + λ2E)xλ = AT b,

where C = AT A and E = HT H.

Set rλ = b−Axλ.

Since AT rλ = λ2Exλ, it holds

λ2‖Exλ‖
‖AT rλ‖ = 1.

So, it could be checked if this ratio is close to 1 for all λ.
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• Is xλ a good approximation of x?

For this question, the preceding estimates could be used.

However, due to the ill-conditioning, c̃2 = ‖AT rλ‖2 is badly
computed when λ approches zero.

So, again, we will replace AT rλ by λ2Exλ in ‖AT rλ‖ and in
(rλ, Arλ) = (AT rλ, rλ).
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In order to find the best value of the parameter λ, we will now
apply our estimates of the norm of the error to Tikhonov’s
regularization method.

Effecting the preceding substitutions, we finally obtain the
error estimates

ẽ2
ν = ‖rλ‖2ν−2(rλ,Exλ)6−2ν‖Exλ‖2ν−8λ−4.

Contrarily to the more general estimates which are always
valid, this new formula is only valid for Tikhonov’s
regularization. So, it should lead to better numerical results.
Testing the equality λ2‖Exλ‖/‖AT rλ‖ = 1 is also only valid for
Tikhonov’s regularization.

Let us remark that (rλ, Exλ) = (Hrλ, Hxλ) which avoids
computing the matrix E and, in several cases, leads to a
more stable procedure.
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EXAMPLE 1:

In this example we show how our estimates behave in a
problem for which the L–curve method fails.

We consider the Pascal matrix of dimension 20 whose
estimated condition number is 1.03 · 10+21. The solution was
chosen to be x = (1, . . . , 1)T , the noise level on the right hand
side was 10−8, and the regularization matrix was the identity.

The thick line gives the Euclidean norm of the error. From the
bottom to the top, the solid lines represent ẽ1, ẽ3 and ẽ5 versus
λ, while the dashed ones are ẽ2, ẽ4 and ẽ6.
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Figure 3: Error and estimates
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• Using the SVD for computing xλ, the minimal value for
‖x− xλ‖ is equal to 1.1 · 10−3, and is reached for
λ = 6.1 · 10−3.

• Our estimates furnish λ = 7.8 · 10−3, and the corresponding
error is the optimal one, within the first two significant
digits.

• The GCV provides λ = 4.8 · 10−4 with an error of 2.6 · 10−3.

• The L–curve is displayed in the next Figure. It does not
exhibit a recognizable corner (it is not even L-shaped),
but the routine from Hansen’s toolbox incorrectly locates
a corner at λ = 1.7 · 10+9, with a corresponding error of 4.1.
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EXAMPLE 2:

We consider the Baart matrix of dimension 20. The solution
was chosen to be x = (1, . . . , 1)T , the noise level on the right
hand side was 10−8, and the regularization matrix was the
discrete approximation of the second derivative.

For this example, we plot the ratio λ2‖Exλ‖/‖AT rλ‖ with
respect to λ. This ratio must be equal to 1 for all λ. The vertical
dashed line indicates the value of λ where ‖eλ‖ reaches its
minimum. Thus, this ratio could also be used as a test for the
correctness of the computation of xλ, as mentioned above.
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Figure 5: Ratio λ2‖Exλ‖/‖AT rλ‖ for Baart matrix
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EXAMPLE 3:

The conjugate gradient itself has a regularizing effect.

Let us now use our estimates for stopping the iterations of CG.

We take the Gaussian matrix of dimension 10000, with a unit
solution, and a noise level of 10−4.

Its asymptotic condition number, when the parameter σ is
equal to 0.01, is 1.0 · 10214.

Left: error (thick line), estimates ẽν for ν = 1, . . . , 5, versus the
iterations.

Right: (thick plain line), A-norm error, (e,Ae)1/2 (thick dashed
line), estimates ẽ3 (thin plain line), (ê3)1/2 (thin dashed line).
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Figure 6: Regularizing CG: Gaussian matrix
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EXAMPLE 4:

Finally, let us solve an image deblurring problem by CG. The
size of the image is 256× 256, and so dimension of the system
is 2562 = 65536.

We initially apply a Gaussian blur to a test image, displayed
on the left of the Figure (see below), and contaminate it with
a noise at level 10−4 and 10−2.

The next Figure reports the graph of the error (thick lines) and
of e3 (thin lines) for the two noise levels.
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Figure 7: CG: deblurring problem
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test image blurred (ε =10−4) recovered (k=17)

Figure 8: Images for the deblurring problem
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RECENT WORKS

➜ Least squares solution of rectangular systems
C.B., G. Rodriguez, S. Seatzu

➜ Partial Lanczos bidiagonalization of the matrix
L. Reichel, G. Rodriguez, S. Seatzu
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