
Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

A Fast QR Eigenvalue Method for a Class of
Structured Matrices

D. A. Bini1 P. Boito2 Y. Eidelman3 L. Gemignani1

I. Gohberg3

1University of Pisa (Italy)

2University of Toulouse 3 - Paul Sabatier (France)

3Tel-Aviv University (Israel)

Structured Linear Algebra Problems: Analysis, Algorithms
and Applications, Cortona, 15-19 September 2008

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Outline

1 Introduction

2 Structured Matrices and Their Representation

3 The Algorithm

4 Numerical Experiments

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Computing Eigenvalues

Problem
Given A ∈ Rn×n or Cn×n, compute all its eigenvalues.

This task is usually accomplished by applying the QR method:
Computational cost: O(n3)

Storage: O(n2).
The method is effective but not suitable for large matrices.
But the structure of A can be exploited to achieve a
computational cost of O(n2) with linear memory space.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Computing Eigenvalues

Problem
Given A ∈ Rn×n or Cn×n, compute all its eigenvalues.

This task is usually accomplished by applying the QR method:
Computational cost: O(n3)

Storage: O(n2).
The method is effective but not suitable for large matrices.
But the structure of A can be exploited to achieve a
computational cost of O(n2) with linear memory space.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Computing Eigenvalues

Problem
Given A ∈ Rn×n or Cn×n, compute all its eigenvalues.

This task is usually accomplished by applying the QR method:
Computational cost: O(n3)

Storage: O(n2).
The method is effective but not suitable for large matrices.
But the structure of A can be exploited to achieve a
computational cost of O(n2) with linear memory space.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

The structure we are interested in...

We consider matrices A ∈ Cn×n which are upper Hessenberg
and have the form

A = U − pqT

where
U ∈ Cn×n is unitary,
p,q ∈ Cn (perturbation vectors).

Observe that U belongs to the class Un of n × n unitary
matrices which can be written as a rank one correction of an
upper Hessenberg matrix.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

The structure we are interested in...

We consider matrices A ∈ Cn×n which are upper Hessenberg
and have the form

A = U − pqT

where
U ∈ Cn×n is unitary,
p,q ∈ Cn (perturbation vectors).

Observe that U belongs to the class Un of n × n unitary
matrices which can be written as a rank one correction of an
upper Hessenberg matrix.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Some History

Restarted QR:
Calvetti, Kim, Reichel (2002)

Explicit structured QR for companion, fellow,
unitary-quasiseparable matrices:

Bini, Daddi, Gemignani (2004)
Bini, Eidelman, Gemignani, Gohberg (2007)

Implicit structured QR for unitary (and more general)
matrices: Gragg (1986), Leuven group.
Implicit structured QR for companion / sequentially
semiseparable matrices:

Chandrasekaran, Gu, Xia, Zhu (2007)

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Some History

Restarted QR:
Calvetti, Kim, Reichel (2002)

Explicit structured QR for companion, fellow,
unitary-quasiseparable matrices:

Bini, Daddi, Gemignani (2004)
Bini, Eidelman, Gemignani, Gohberg (2007)

Implicit structured QR for unitary (and more general)
matrices: Gragg (1986), Leuven group.
Implicit structured QR for companion / sequentially
semiseparable matrices:

Chandrasekaran, Gu, Xia, Zhu (2007)

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Some History

Restarted QR:
Calvetti, Kim, Reichel (2002)

Explicit structured QR for companion, fellow,
unitary-quasiseparable matrices:

Bini, Daddi, Gemignani (2004)
Bini, Eidelman, Gemignani, Gohberg (2007)

Implicit structured QR for unitary (and more general)
matrices: Gragg (1986), Leuven group.
Implicit structured QR for companion / sequentially
semiseparable matrices:

Chandrasekaran, Gu, Xia, Zhu (2007)

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Some History

Restarted QR:
Calvetti, Kim, Reichel (2002)

Explicit structured QR for companion, fellow,
unitary-quasiseparable matrices:

Bini, Daddi, Gemignani (2004)
Bini, Eidelman, Gemignani, Gohberg (2007)

Implicit structured QR for unitary (and more general)
matrices: Gragg (1986), Leuven group.
Implicit structured QR for companion / sequentially
semiseparable matrices:

Chandrasekaran, Gu, Xia, Zhu (2007)

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Our Result

For theoretical background, see also the 2006 SIAM Annual
Meeting (Boston), session on Structured Matrices and Fast
Algorithms.
We present here a new algorithm which

is based on the implicit QR method,
computes the eigenvalues of Hessenberg matrices which
are unitary + rank 1,
achieves quadratic computational cost and linear memory,
shows good stability properties.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Our Result

For theoretical background, see also the 2006 SIAM Annual
Meeting (Boston), session on Structured Matrices and Fast
Algorithms.
We present here a new algorithm which

is based on the implicit QR method,
computes the eigenvalues of Hessenberg matrices which
are unitary + rank 1,
achieves quadratic computational cost and linear memory,
shows good stability properties.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Representation of U

U = A + pqT

with U unitary, A upper Hessenberg. We will use two different
representations for U:

as product of "small" unitary matrices,
as a quasiseparable matrix.

About product structure: compare Schur parametrization
(Gragg) and generalized Givens representation (Leuven group).

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Representation of U

U = A + pqT

with U unitary, A upper Hessenberg. We will use two different
representations for U:

as product of "small" unitary matrices,
as a quasiseparable matrix.

About product structure: compare Schur parametrization
(Gragg) and generalized Givens representation (Leuven group).

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Representation of U

U = A + pqT

with U unitary, A upper Hessenberg. We will use two different
representations for U:

as product of "small" unitary matrices,
as a quasiseparable matrix.

About product structure: compare Schur parametrization
(Gragg) and generalized Givens representation (Leuven group).

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

Choose 2× 2 unitary matrices {Vi}i=2,...,n−1 such that

V ∗i ·
[

pi
βi+1

]
=

[
βi
0

]
, i = n − 1, . . . ,2

for some complex numbers {βi}i=2,...,n, with βn = p(n). For
each i set

Ṽi =

 Ii−1
Vi

In−i−1


and define V = Ṽn−1 · Ṽn−2 · . . . · Ṽ2.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

U =

× × × × × ×
× × × × × ×

p(3)q(1) × × × × ×
p(4)q(1) p(4)q(2) × × × ×
p(5)q(1) p(5)q(2) p(5)q(3) × × ×
p(6)q(1) p(6)q(2) p(6)q(3) p(6)q(4) × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

Ṽ ∗5 · U =

× × × × × ×
× × × × × ×

p(3)q(1) × × × × ×
p(4)q(1) p(4)q(2) × × × ×
β(5)q(1) β(5)q(2) β(5)q(3) × × ×

0 0 0 × × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

Ṽ ∗4 · Ṽ ∗5 · U =

× × × × × ×
× × × × × ×

p(3)q(1) × × × × ×
β(4)q(1) β(4)q(2) × × × ×

0 0 × × × ×
0 0 0 × × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

Ṽ ∗3 · Ṽ ∗4 · Ṽ ∗5 · U =

× × × × × ×
× × × × × ×

β(3)q(1) × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

Now choose 3× 3 unitary matrices {Fi}i=1,...,n−2 and for each i
set

F̃i =

 Ii−1 0 0
0 Fi 0
0 0 In−i−2

 .
Define F = F̃1 · F̃2 · · · · · F̃n−2, so that we have...

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

V ∗ · U =

× × × × × ×
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

F̃ ∗1 · V ∗ · U =

× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

F̃ ∗2 · F̃ ∗1 · V ∗ · U =

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 0 × × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

F̃ ∗3 · F̃ ∗2 · F̃ ∗1 · V ∗ · U =

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 × × ×
0 0 0 × × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

F̃ ∗4 · F̃ ∗3 · F̃ ∗2 · F̃ ∗1 · V ∗ · U =

× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×
0 0 0 0 0 ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Product Structure

...and the upper triangular factor must be the identity. We obtain
a factorization

U = V · F

where the unitary matrices V and F have the form

V =



1 0 0 0 0 0
0 × × 0 0 0
0 × × × 0 0
0 × × × × 0
0 × × × × ×
0 × × × × ×

 , F =



× × × × × ×
× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×


(V is lower Hessenberg and tril(F ,−3)=0).

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Quasiseparable Structure

First introduced in [Eidelman, Gohberg (1999)].

Definition
M ∈ Cn×n is (nL,nU)-quasiseparable if

nL = max1≤k≤n−1 rank M(k + 1 : n,1 : k),
nU = max1≤k≤n−1 rank M(1 : k , k + 1 : n).

Quasiseparable matrices can be represented using
O((nL + nU)n) parameters.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Quasiseparable Representation of U

Theorem
The upper triangular part of U has the structure

U(i , j) = gi · bi · bi+1 · · · · · bj−1 · hj , i ≤ j

where
g1, . . . ,gn are row vectors of length 2,
h1, . . . ,hn are column vectors of length 2,
b1, . . . ,bn−1 are 2× 2 matrices.

Recall that the tril(U,−2) is defined by

U(i , j) = p(i) · q(j), i > j + 1

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Quasiseparable Representation of U

Theorem
The upper triangular part of U has the structure

U(i , j) = gi · bi · bi+1 · · · · · bj−1 · hj , i ≤ j

where
g1, . . . ,gn are row vectors of length 2,
h1, . . . ,hn are column vectors of length 2,
b1, . . . ,bn−1 are 2× 2 matrices.

Recall that the tril(U,−2) is defined by

U(i , j) = p(i) · q(j), i > j + 1

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Quasiseparable Representation of U

Therefore U can be represented as

U =


g1 · h1 g1 · b1 · h2 g1 · b1 · b2 · h3 . . .
σ1 g2 · h2 g2 · b2 · h3 . . .
p(3)q(1) σ2 g3 · h3 . . .
p(4)q(1) p(4)q(2) σ3
...


and it is completely determined by the sets of generators {gi},
{hi}, {bi}, {σi} and the perturbation vectors p and q. to algorithm

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Recovery of Quasiseparable Structure

The quasiseparable representation can easily be recovered
from the product representation:

hk = Fk (1 : 2,1) for k = 1, . . . ,n − 2

hn−1 =

(
1
0

)
, hn =

(
0
1

)
bk = Fk (1 : 2,2 : 3) for k = 1, . . . ,n − 2, bn−1 = I2
γ1 =

(
0 1

)
, g1 =

(
1 0

)(
σk gk+1

q(k) γk+1

)
= Vk+1

(
γk 0
0 1

)
Fk , k = 1, . . . ,n − 2

σn−1 = γn−1hn−1, gn = γn−1bn−1

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

An Interesting Example: Companion Matrices

Let P(z) = zn +
∑n+1

j=2 cjz j a real or complex monic polynomial.
Then the associated companion matrix

AP =


−c2 −c3 . . . −cn −cn+1

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0


displays an upper Hessenberg and (unitary + rank one)
structure.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Classic Explicit QR

Let A ∈ Rn×n or Cn×n. Then the iteration defined by

A(0) = A
A(i) = Q(i) · R(i)

A(i+1) := R(i) ·Q(i), i = 0,1,2, . . .

converges to an upper triangular matrix B which has the same
eigenvalues as A.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Classic Implicit QR

Let A ∈ Rn×n or Cn×n. Then the iteration defined by

A(0) = A
A(i+1) := (Q(i))∗ · A(i) ·Q(i),

where A(i) = Q(i) · R(i) for i = 0,1,2, . . .
converges to an upper triangular matrix B which has the same
eigenvalues as A.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Shift Strategies

To accelerate convergence, QR iterations are generally applied
to P(A(i)), where P(X) is a carefully chosen polynomial, rather
than to A(i) itself. Usual choices for P(X) include:

(single shift) P(X) = X − αI, with α = X (n,n)

(double shift) P(X) = (X − α1I)(X − α2I), with α1 and α2
eigenvalues of(

X (n − 1,n − 1) X (n − 1,n)
X (n,n − 1) X (n,n)

)

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Shift Strategies

To accelerate convergence, QR iterations are generally applied
to P(A(i)), where P(X) is a carefully chosen polynomial, rather
than to A(i) itself. Usual choices for P(X) include:

(single shift) P(X) = X − αI, with α = X (n,n)

(double shift) P(X) = (X − α1I)(X − α2I), with α1 and α2
eigenvalues of(

X (n − 1,n − 1) X (n − 1,n)
X (n,n − 1) X (n,n)

)

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Shift Strategies

To accelerate convergence, QR iterations are generally applied
to P(A(i)), where P(X) is a carefully chosen polynomial, rather
than to A(i) itself. Usual choices for P(X) include:

(single shift) P(X) = X − αI, with α = X (n,n)

(double shift) P(X) = (X − α1I)(X − α2I), with α1 and α2
eigenvalues of(

X (n − 1,n − 1) X (n − 1,n)
X (n,n − 1) X (n,n)

)

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Bulge Chasing

Practical implementation of implicit QR with single shift on an
upper Hessenberg matrix A:

choose Q1 unitary 2× 2 such that

Q∗1 ·
[

A(1,1)− α
A(2,1)

]
=

[
×
0

]
,

perform bulge chasing:

A =



× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Bulge Chasing

Practical implementation of implicit QR with single shift on an
upper Hessenberg matrix A:

choose Q1 unitary 2× 2 such that

Q∗1 ·
[

A(1,1)− α
A(2,1)

]
=

[
×
0

]
,

perform bulge chasing:

Q̃∗1 · A =



× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Bulge Chasing

Practical implementation of implicit QR with single shift on an
upper Hessenberg matrix A:

choose Q1 unitary 2× 2 such that

Q∗1 ·
[

A(1,1)− α
A(2,1)

]
=

[
×
0

]
,

perform bulge chasing:

Q̃∗1 · A · Q̃1 =



× × × × × ×
× × × × × ×
× × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Bulge Chasing

Practical implementation of implicit QR with single shift on an
upper Hessenberg matrix A:

choose Q1 unitary 2× 2 such that

Q∗1 ·
[

A(1,1)− α
A(2,1)

]
=

[
×
0

]
,

perform bulge chasing:

Q̃∗2 · Q̃∗1 · A · Q̃1 =



× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Bulge Chasing

Practical implementation of implicit QR with single shift on an
upper Hessenberg matrix A:

choose Q1 unitary 2× 2 such that

Q∗1 ·
[

A(1,1)− α
A(2,1)

]
=

[
×
0

]
,

perform bulge chasing:

Q̃∗2 · Q̃∗1 · A · Q̃1 · Q̃2 =



× × × × × ×
× × × × × ×
0 × × × × ×
0 × × × × ×
0 0 0 × × ×
0 0 0 0 × ×



Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Application to the Quasiseparable Structure

What happens in the structured case?
The QR iteration preserves the upper Hessenberg and
unitary + rank one structure.
We can carry out each QR iteration working only on the
quasiseparable and product representations.

We apply the shifted implicit QR strategy to A = U − pqT . At
each iteration:

the bulge chasing process is applied to A in order to
compute the Qi ’s (using the quasiseparable
structure), q.s.rep.

the product structure of the next iterate A(1) = Q∗ · A ·Q is
computed,
the quasiseparable structure of A(1) is recovered.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Application to the Quasiseparable Structure

What happens in the structured case?
The QR iteration preserves the upper Hessenberg and
unitary + rank one structure.
We can carry out each QR iteration working only on the
quasiseparable and product representations.

We apply the shifted implicit QR strategy to A = U − pqT . At
each iteration:

the bulge chasing process is applied to A in order to
compute the Qi ’s (using the quasiseparable
structure), q.s.rep.

the product structure of the next iterate A(1) = Q∗ · A ·Q is
computed,
the quasiseparable structure of A(1) is recovered.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Application to the Quasiseparable Structure

What happens in the structured case?
The QR iteration preserves the upper Hessenberg and
unitary + rank one structure.
We can carry out each QR iteration working only on the
quasiseparable and product representations.

We apply the shifted implicit QR strategy to A = U − pqT . At
each iteration:

the bulge chasing process is applied to A in order to
compute the Qi ’s (using the quasiseparable
structure), q.s.rep.

the product structure of the next iterate A(1) = Q∗ · A ·Q is
computed,
the quasiseparable structure of A(1) is recovered.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Application to the Quasiseparable Structure

What happens in the structured case?
The QR iteration preserves the upper Hessenberg and
unitary + rank one structure.
We can carry out each QR iteration working only on the
quasiseparable and product representations.

We apply the shifted implicit QR strategy to A = U − pqT . At
each iteration:

the bulge chasing process is applied to A in order to
compute the Qi ’s (using the quasiseparable
structure), q.s.rep.

the product structure of the next iterate A(1) = Q∗ · A ·Q is
computed,
the quasiseparable structure of A(1) is recovered.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Application to the Quasiseparable Structure

What happens in the structured case?
The QR iteration preserves the upper Hessenberg and
unitary + rank one structure.
We can carry out each QR iteration working only on the
quasiseparable and product representations.

We apply the shifted implicit QR strategy to A = U − pqT . At
each iteration:

the bulge chasing process is applied to A in order to
compute the Qi ’s (using the quasiseparable
structure), q.s.rep.

the product structure of the next iterate A(1) = Q∗ · A ·Q is
computed,
the quasiseparable structure of A(1) is recovered.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Application to the Quasiseparable Structure

What happens in the structured case?
The QR iteration preserves the upper Hessenberg and
unitary + rank one structure.
We can carry out each QR iteration working only on the
quasiseparable and product representations.

We apply the shifted implicit QR strategy to A = U − pqT . At
each iteration:

the bulge chasing process is applied to A in order to
compute the Qi ’s (using the quasiseparable
structure), q.s.rep.

the product structure of the next iterate A(1) = Q∗ · A ·Q is
computed,
the quasiseparable structure of A(1) is recovered.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Application to the Quasiseparable Structure

What happens in the structured case?
The QR iteration preserves the upper Hessenberg and
unitary + rank one structure.
We can carry out each QR iteration working only on the
quasiseparable and product representations.

We apply the shifted implicit QR strategy to A = U − pqT . At
each iteration:

the bulge chasing process is applied to A in order to
compute the Qi ’s (using the quasiseparable
structure), q.s.rep.

the product structure of the next iterate A(1) = Q∗ · A ·Q is
computed,
the quasiseparable structure of A(1) is recovered.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Numerical Experiments

We implemented this algorithm (fastQR) in Fortran 95 for the
case of companion matrices. Numerical experiments have
been carried out on several families of test polynomials, in
order to check:

growth of running time,
accuracy of output (comparison with output given by
LAPACK),
(backward) stability,
comparison of performance with other fast eigenvalue
solvers.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Errors

Absolute forward error: distance between the eigenvalues
found by the structured methods and the eigenvalues
computed by LAPACK (sort vectors and compute max
distance);
Relative backward error:

b.e. =
‖Q∗aA0Qa − (Vf Ff − pf qT

f)‖∞
‖A0‖∞

where Qa is the accumulated unitary similarity
transformation and Vf ,Ff ,pf ,qf are generators for the final
iterate Af .

Estimate for the forward error:

K · ε · ‖A‖2 · max(condeig(A)).

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Single Shift, Random Coefficients

Example 1: Monic polynomials with complex pseudorandom
coefficients; both the real and imaginary part belong to [−1,1]:

compare running time to LAPACK (routine ZGEEV),
check growth of running time,
check forward and backward errors.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Single Shift, Random Coefficients
Comparison with LAPACK

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Single Shift, Random Coefficients
Time growth, log-log plot

Polynomials of degrees from 50 to 2000

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Single Shift, Random Coefficients II

Example 2: P(z) = zn +
∑n−1

j=0 ajz j , with aj = uj · 10vj ,
where |uj | ∈ [−1,1] and vj ∈ [−5,5].

deg b.e. f.e. δ

50 4.91× 10−15 6.24× 10−10 2.21× 10−8

100 6.63× 10−15 6.95× 10−10 1.61× 10−8

150 7.02× 10−15 3.19× 10−10 1.12× 10−7

500 7.43× 10−15 8.30× 10−10 8.28× 10−7

1000 1.44× 10−14 1.47× 10−9 1.59× 10−6

δ = ε · ‖A‖2 · max(condeig(A))

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Single Shift, Random Coefficients II

Example 2: P(z) = zn +
∑n−1

j=0 ajz j , with aj = uj · 10vj ,
where |uj | ∈ [−1,1] and vj ∈ [−5,5].

deg b.e. f.e. δ

50 4.91× 10−15 6.24× 10−10 2.21× 10−8

100 6.63× 10−15 6.95× 10−10 1.61× 10−8

150 7.02× 10−15 3.19× 10−10 1.12× 10−7

500 7.43× 10−15 8.30× 10−10 8.28× 10−7

1000 1.44× 10−14 1.47× 10−9 1.59× 10−6

δ = ε · ‖A‖2 · max(condeig(A))

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Double Shift, Random Coefficients

Example 3: Monic polynomials with real pseudorandom
coefficients in [−1,1]:

compare running time to LAPACK (routine DGEEV) and
SSS-QR (Chandrasekaran et al.),
check growth of running time,
check forward errors.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Double Shift, Random Coefficients
Comparison with LAPACK and SSS-QR

absolute forward errors ∼ 10−14

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Double Shift, Random Coefficients
Time growth, log-log plot

Polynomials of degrees from 50 to 2000

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Double Shift, Random Coefficients
Forward errors, log plot

Polynomials of degrees from 50 to 2000

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Double Shift, Roots of 1

Example 4: P(x) = xn − 1
compare running time to LAPACK (routine DGEEV) and
SSS-QR (Chandrasekaran et al.),
check forward errors.

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Double Shift, Roots of 1
Comparison with LAPACK and SSS-QR

absolute forward errors ∼ 10−15

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Summary and Future Work

We have developed and implemented a fast version of the
implicit QR method for Hessenberg matrices which are
rank-one perturbations of unitary matrices.
Numerical tests show that the algorithm has good stability
properties and confirm theoretical estimates on
computational cost (O(n2)) and required memory space
(O(n)).
Open issue: give a theoretical proof of stability (the use of
a representation via unitary matrices may prove helpful).

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Summary and Future Work

We have developed and implemented a fast version of the
implicit QR method for Hessenberg matrices which are
rank-one perturbations of unitary matrices.
Numerical tests show that the algorithm has good stability
properties and confirm theoretical estimates on
computational cost (O(n2)) and required memory space
(O(n)).
Open issue: give a theoretical proof of stability (the use of
a representation via unitary matrices may prove helpful).

Introduction Structured Matrices and Their Representation The Algorithm Numerical Experiments Summary

Summary and Future Work

We have developed and implemented a fast version of the
implicit QR method for Hessenberg matrices which are
rank-one perturbations of unitary matrices.
Numerical tests show that the algorithm has good stability
properties and confirm theoretical estimates on
computational cost (O(n2)) and required memory space
(O(n)).
Open issue: give a theoretical proof of stability (the use of
a representation via unitary matrices may prove helpful).

Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · · · · · Q̃∗1 · Ṽn−1 · · · · · Ṽ2 · F̃1 · . . . F̃n−2 · Q̃1 · · · · · Q̃n−1

Observe that
Q̃∗k commutes with Ṽn−1, . . . , Ṽk+2 for 1 ≤ k ≤ n − 3

Q̃k commutes with F̃n−2, . . . , F̃k+3 for 1 ≤ k ≤ n − 4
so we have

A(1) = Q̃∗n−1 ·· · ··Ṽ4 ·Q̃∗2 ·Ṽ3 ·Q̃∗1 ·Ṽ2 ·F̃1 ·F̃2 ·Q̃1 ·F̃3 ·Q̃2 ·F̃4 ·· · ··Q̃n−1

Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · · · · · Q̃∗1 · Ṽn−1 · · · · · Ṽ2 · F̃1 · . . . F̃n−2 · Q̃1 · · · · · Q̃n−1

Observe that
Q̃∗k commutes with Ṽn−1, . . . , Ṽk+2 for 1 ≤ k ≤ n − 3

Q̃k commutes with F̃n−2, . . . , F̃k+3 for 1 ≤ k ≤ n − 4
so we have

A(1) = Q̃∗n−1 ·· · ··Ṽ4 ·Q̃∗2 ·Ṽ3 ·Q̃∗1 ·Ṽ2 ·F̃1 ·F̃2 ·Q̃1 ·F̃3 ·Q̃2 ·F̃4 ·· · ··Q̃n−1

Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · · · · · Q̃∗1 · Ṽn−1 · · · · · Ṽ2 · F̃1 · . . . F̃n−2 · Q̃1 · · · · · Q̃n−1

Observe that
Q̃∗k commutes with Ṽn−1, . . . , Ṽk+2 for 1 ≤ k ≤ n − 3

Q̃k commutes with F̃n−2, . . . , F̃k+3 for 1 ≤ k ≤ n − 4
so we have

A(1) = Q̃∗n−1 ·· · ··Ṽ4 ·Q̃∗2 ·Ṽ3 ·Q̃∗1 ·Ṽ2 ·F̃1 ·F̃2 ·Q̃1 ·F̃3 ·Q̃2 ·F̃4 ·· · ··Q̃n−1

Computation of New Product Structure (Single shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(1)
k · F̃ (τ)

k+1 · . . . · ·Q̃n−1

Computation of New Product Structure (Single shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(1)
k · F̃ (τ)

k+1 · . . . · ·Q̃n−1

Computation of New Product Structure (Single shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(1)
k · F̃ (τ)

k+1 · . . . · ·Q̃n−1

Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

 1 0 0
0
0 Vk+2

·
 V (τ)

k+1 0
0

0 0 1



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

 × × 0
× × ×
× × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

 Q∗k+1 0
0

0 0 1

 ·
 × × 0
× × ×
× × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

 × × ×
× × ×
× × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

 × × ×
× × ×
× × ×

 ·

 H∗ 0
0

0 0 1



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Q̃∗k+1 · Ṽk+2 · Ṽ
(τ)
k+1 · Ṽ

(1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

 × × 0
× × ×
× × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

 1 0 0
0
0 V (τ)

k+2

·
 V (1)

k+1 0
0

0 0 1



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1


0

F (τ)
k 0

0
0 0 0 1

·


1 0 0 0
0
0 Fk+1
0

 ·

Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1


× × × ×
× × × ×
× × × ×
0 × × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1


× × × ×
× × × ×
× × × ×
0 × × ×

 ·


Qk 0 0

0 0
0 0 1 0
0 0 0 1



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1


× × × ×
× × × ×
× × × ×
× × × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1

·


1 0 0 0
0 1 0 0
0 0 H
0 0

 ·

× × × ×
× × × ×
× × × ×
× × × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(τ)
k · F̃k+1 · Q̃k · . . . · ·Q̃n−1


× × × ×
× × × ×
× × × ×
0 × × ×



Computation of New Product Structure (Single Shift)

A(1) = Q̃∗n−1 · . . . · Ṽ
(τ)
k+2 · Ṽ

(1)
k+1 · H̃

∗ · Ṽ (1)
k · . . . · Ṽ (1)

2 ·

·F̃ (1)
1 · . . . · F̃ (1)

k−1 · H̃ · F̃
(1)
k · F̃ (τ)

k+1 · . . . · ·Q̃n−1


0

F (1)
k 0

0
0 0 0 1

·


1 0 0 0
0
0 F (τ)

k+1
0

 ·

	Introduction
	Structured Matrices and Their Representation
	The Algorithm
	Numerical Experiments
	Summary
	Appendix

