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Density Matrices

In quantum chemistry, one is interested in determining the electronic

structure of (possibly large) molecules. In order to make the problem

tractable, various approximations have been devised:

Wavefunction methods (e.g., Hartree-Fock)

Density Functional Theory (e.g., Kohn-Sham)

In DFT, the electronic density ρ (a scalar field on R3) is sought, rather

than the ground state wavefunction (a scalar field on R3N):

ρ(x) = N

∫
R3(N−1)

|ψ(x , x2, . . . , xN)|2dx2 . . . dxN

For large systems, further approximations are necessary. In the LDA (Local

Density Approximation) framework, the problem is reduced to the computation

of a sequence of density matrices of certain one-electron Hamiltonians (SCF

iteration).
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Density Matrices

All the statistical properties of a quantum-mechanical system in a given

state can be described by a density matrix, i.e., a compact (in fact, trace

class) operator P on a Hilbert space H such that:

1 0 � P = P∗

2 Trace(P) = 1 (⇒ 0 � P � I )

3 For the ground state, Trace(PH) = 〈P,H〉HS = min

where H = H∗ is the Hamiltonian and the minimization takes place over

all trace class operators P satisfying conditions 1-2.

For systems in equilibrium, [H,P] = 0 and P is a function of the

Hamiltonian: P = f (H).
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Density Matrices

In practice, the operators are replaced by matrices upon introduction

of a set of basis functions {φ}ni=1 into the Hilbert space H, where n is

a multiple of N = # of electrons. For simplicity, here we assume an

orthonormal basis. The resulting matrices are ‘sparse’: their

pattern/bandwidth is determined by the range of the interactions.

Once the density matrix is known, one can readily compute:

1 The probability of state φi , given by Pii

2 The coherences between states, given by Pij (i 6= j)

3 The expectation of a physical observable: 〈A〉 = Trace(AP)

4 The uncertainty (dispersion) of an observable:

∆A = (〈A2〉− 〈A〉2)
1
2 = [Trace(A2P) − Trace(AP)2]

1
2
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Density Matrices

In (zero-temperature) electronic structure theory P is, up to a

normalization factor, the spectral projector onto the subspace spanned

by the N lowest eigenfunctions of H (occupied states):

P =
1

N
(ψ1ψ

∗
1 + · · ·+ψNψ

∗
N)

where Hψi = λi ψi , i = 1, . . . ,N.

Note that Trace(PH) = λ1 + · · ·+ λN .

Ignoring the normalization factor, P = f (H) where f is the step function

f (x) =

{
1 if x ≤ µ
0 if x > µ

with λN ≤ µ < λN+1 (“Fermi level”).
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Density Matrices

If the spectral gap γ = λN+1 − λN is not too small, f can be well

approximated by the Fermi-Dirac function

f (x) =
1

1 + eβ(x−µ)

which tends to a step function as the parameter β increases.

For systems at positive temperature (T > 0), the density matrix is given

by the canonical (Boltzmann) distribution

P = e−βH/Z , Z = Trace
(
e−βH

)
, where β = (κT )−1.

This expression for P is obtained by maximizing the ‘von Neumann entropy’

σ = −Trace(P log P) subject to Trace(P) = 1 and Trace(HP) = 〈H〉.
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Approximations of P

f (x) =
1

1 + eβ(x−µ)
f (x) = e−

x
κT
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Locality of interactions (‘Nearsightedness Principle’)

Physicists have observed long ago that for ‘gapped systems’ (like

insulators), the entries of the density matrix P decay exponentially

fast away from the main diagonal. For metallic systems, decay is

only algebraic.

This is closely related to the decay of the eigenfunctions corresponding

to the occupied states. A classical example is the Anderson model

In the last 10-15 years, this localization property has been exploited

to develop ‘linear scaling’ algorithms for approximating P, i.e.,

algorithms that asymptotically require O(n) = O(kN) work

There are also connections with random matrix theory and with the

deflation phenomenon in the Divide-and-Conquer algorithm for the

eigenvalues of symmetric tridiagonal matrices; see Trefethen and

Bau’s Numerical Linear Algebra, pp. 232–233 More
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Sparse approximations of f (A)

Most of the literature deals with one of these two problems:

Computing f (A) for a general matrix A of moderate size

Computing the product f (A)v where A is large and sparse and

v is a given vector

In some cases, however, we need to approximate f (A) where A can be

large and sparse (or banded).

Example: density matrices P = f (H).

Since we are interested in Trace(PA) for different A, we need to compute

P (to a certain accuracy). Diagonalization costs O(n3) work and O(n2)

storage ⇒ too expensive!
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Sparse approximations of f (A)

In order to find viable alternatives to diagonalization, we first need to

address a fundamental question:

Question

If A is sparse, can we expect f (A) to be sparse?

Answer

Given an irreducible matrix A it is easy to show, under very mild

assumptions on f , that f (A) is structurally full, hence no sparsity is

present in f (A). This holds in particular for A−1 and exp(A)

An important goal:

To investigate the possibility of linear scaling algorithms to

approximate f (A) when A is sparse (or banded), and to

develop such O(n) methods when appropriate
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An example for e
A with A tridiagonal

Sparsity pattern of A = trid(−1, 2,−1) and eA = expm(A).
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An example for e
A with tridiagonal A

|[eA]ij |
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A decay result for functions of banded symmetric matrices

Theorem

Let A be a symmetric m-banded matrix and let f be a smooth function on

the spectrum of A such that f (x) is real for x ∈ R. Then there exist

0 < ρ < 1 and K = K (f ,A) such that |[f (A)]ij | ≤ Kρ|i−j |.

Main ingredients of the proof: approximation theory (Bernstein’s Thm.)

and the Spectral Theorem.

Also valid for A ∈ B(`2) if f (A) ∈ B(`2).

M. B. & Gene Golub, Bounds for the entries of matrix functions with

applications to preconditioning, BIT, 1999
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Brief review of decay results

In 1984, exponential decay bounds were proved for the inverse of

banded, symmetric positive definite matrices by Demko, Moss &

Smith; see also Jaffard (1991), Blatov (1996), et al.

In 1999, B. & Golub proved the above-mentioned decay bound for

f (A) with A banded, symmetric

In 2000, Iserles proved decay results for the exponential of band

matrices

In 2005, Del Buono, Lopez & Peluso proved decay bounds for

functions of banded skew-symmetric matrices

In 2006, extensions of the B.-Golub bounds to sparse Hermitian

matrices appeared in the quantum computing literature

Further extension to non-normal matrices by B. & Razouk in 2007
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Decay for exponential of a sparse Hamiltonian matrix

Sparsity pattern of a 2n × 2n Hamiltonian matrix A and decay in exp(A).
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Note that exp(A) is symplectic. Also, here A is non-normal.
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Decay for logarithm of a sparse matrix

Sparsity pattern of A = mesh3e1 (from NASA) and decay in log(A).
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Here A is symmetric positive definite.
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Assessment of the bound for A banded Hermitian

Upper bounds vs. |[eA]ij | first row.
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Sufficient conditions for O(n) approximation of f (A)

Let {An} be a sequence of n × n Hermitian matrices such that there

is a closed interval I with the property that σ(An) ⊂ I for all n

Assume that {An} has bandwidth m independent of n

Let f be a function analytic on a neighborhood of I
Assume furthermore that the spectrum of {An} remains bounded

away from the singularities of f as n → ∞
Then there is an m̂ such that f (An) can be uniformly approximated

by the truncated matrix [f (An)]
(m̂) for all n

The result holds for any sparsity pattern of {An} (independent of n)
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Approximation of f (A) by polynomials

Algorithm More

We compute approximations of f (A) using Chebyshev polynomials

The degree of the polynomial can be estimated a priori

The coefficients of the polynomial can be pre-computed (indep. of n)

Estimates for the extreme eigenvalues of A are required

The polynomial expansion is combined with a procedure that a priori

determines a bandwidth or sparsity pattern for f (A) outside which the

elements are so small that they can be neglected

Cost

This method is multiplication-rich; the matrices are kept sparse

throughout the computation, hence O(n) arithmetic and storage

requirements. Matrix polynomials are evaluated with the classical

Paterson-Stockmeyer algorithm.
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Decay bounds for the Fermi-Dirac approximation

Assume that H is m-banded and has spectrum in [−1, 1], then∣∣∣∣∣
[(

I + eβ(H−µI )
)−1

]
ij

∣∣∣∣∣ ≤ K (γ)ρ(γ)
2|i−j|

m .

Note that β depends on γ and on the desired accuracy. Furthermore, if

γ → 0 then ρ(γ) → 1

and if

γ → 1 then ρ(γ) → 0.872.

We choose β and m̂ so as to guarantee an accuracy ‖P − f (H)‖2 < 10−6.

Remark: The above bound only depends on m and γ.
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Computed bandwidth for approximations of P

f (x) =
1

1 + eβ(x−µ)
f (x) = e−

x
κT
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Significance of our decay bounds for O(N) scaling

We quote a passage from Claude Le Bris (2005):

In order to make alternatives to diagonalization practical (...) an

algorithm is constructed, which might scale cubically in the

whole generality, but scales linearly when H is sparse and when

the density matrix P to be determined is assumed to be sparse.

The latter assumption is in some sense an a posteriori

assumption, and not easy to analyse... It is to be emphasized

that the numerical analysis of the linear scaling methods

overviewed above that would account for cut-off rules and

locality assumptions, is not yet available.

Our bounds, depending only on the interaction range m and on the

spectral gap γ, are a priori and provide a justification of linear scaling

algorithms. However, some estimate of γ is needed.
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Chebyshev expansion

Some results for An tridiagonal, SPD

A log (A) Trace[A log (A)]

n rel. error error m̂ k

100 5e−07 3e−04 20 9

200 6e−07 8e−04 20 9

300 1e−07 3e−04 20 10

500 2e−07 5e−04 20 10

In the Table, m̂ is the estimated bandwidth and k is the number of terms

in the Chebyshev expansion. Note the O(n) behavior in terms of cost.
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Density matrix computation (toy example)

The bandwidth was computed prior to the calculation to be ≈ 20; here H

is tridiagonal (1D Anderson model).

Table: Results for f (x) = 1
1+e

(β(x−µ))

µ = 2, β = 2.13 µ = 0.5, β = 1.84

n error k m̂ error k m̂

100 9e−06 18 20 6e−06 18 22

200 4e−06 19 20 9e−06 18 22

300 4e−06 19 20 5e−06 20 22

400 6e−06 19 20 8e−06 20 22

500 8e−06 19 20 8e−06 20 22
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Density matrix computation
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The O(n) behavior of Chebyshev’s approximation to the Fermi–Dirac

function f (H) = (exp(β(H − µI )) + I )−1.
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Summary

‘Gapped’ systems, like insulators, exhibit strong localization

Localization in f (A), when present, can lead to fast approximation

algorithms

Our exponential decay bounds for density matrices depend only on

the parameters m and γ

These bounds can be useful in determining appropriate sparsity

patterns (or bandwidths) that capture the ‘important’ entries in f (A)

Chebyshev approximations need estimates of the extremal eigenvalues

Extension to non-normal case possible
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Some open problems

Tighter bounds?

Better O(n) algorithms?

How to deal with metallic systems (γ → 0 as n → ∞)?

1 Wavelets?

2 Hierarchical matrices? Semiseparable?

3 Other bases?

How to exploit structure? Lie group/algebra, Toeplitz, etc.

Rigorous error analysis? What if spectrum is not well-estimated?

Rational approximations? See Sidje & Saad (2008)

Software for O(n) approximations?

An excellent reference: C. LeBris, Computational Chemistry from the

Perspective of Numerical Analysis, Acta Numerica 14 (2005), 363-444.
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Localization in spectral projectors: small gap

Rank-one spectral projector for A = AT tridiagonal. Relative gap

γ = 10−3. Note the slow decay and oscillatory behavior.
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Localization in spectral projectors: large gap

Rank-one spectral projector for A = AT tridiagonal. Relative gap γ = 0.5.
Back
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Chebyshev approximation

For A with σ(A) ⊂ [−1, 1] the Chebyshev polynomials are given by

Tk+1(A) = 2ATk(A) − Tk−1(A), T1(A) = A, T0(A) = I .

Then f (A) can be represented in a series of the form

f (A) =

∞∑
k=0

ckTk(A).

The coefficients of the expansion are given by

ck ≈
2

M

M∑
j=1

f (cos(θj)) cos((k − 1)θj),

where θj = π(j − 1
2)/M. Back

Michele Benzi Matrix Functions in QM Cortona, 15-19 September 2008



The n-independence of the error

The Nth truncation error without dropping can be written as

‖eN(A)‖ = ‖f (A) −

N∑
k=0

ckTk(A)‖.

For x in [−1, 1] we have that |Tk(x)| ≤ 1 for k = 1, 2, . . . . Then

‖eN(A)‖ = ‖
∞∑

k=N+1

ckTk(A)‖ ≤
∞∑

k=N+1

|ck |.

Back
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A Theorem of Bernstein

The set of Faber polynomials can be used to obtain a uniform

approximation to an analytic function f with a sequence of polynomials of

bounded degree, i.e.,

|f (z) − ΠN(z)| < cqN (0 < q < 1)

for all z ∈ F , where c and q depend on the analytic properties of f .

Example – Disk

If the region is a disk of radius ρ centered at z0, then for any function f

analytic on the disk of radius ρ/q centered at z0, where 0 < q < 1, there

exists a polynomial ΠN of degree at most N and a positive constant c

such that

|f (z) − ΠN(z)| < cqN ,

for all z ∈ F .

Back
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