Numerical algorithms for large-scale Hamiltonian eigenproblems

Peter Benner

Professur Mathematik in Industrie und Technik
 Fakultät für Mathematik
 Technische Universität Chemnitz

joint work with
Heike Faßbender (TU Braunschweig), Martin Stoll (Oxford University)

Workshop on
Structured Linear Algebra Problems:
Analysis, Algorithms, and Applications
Cortona, Italy, September 15-19, 2008

Overview

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introductior
Symplectic
Lanczos
The SR
Algorithm
HKS
Numerical
Examples
Conclusions and Outlook

References

1 Introduction

- Hamiltonian Eigenproblems
- Applications

2 The Symplectic Lanczos Algorithm
3 The SR Algorithm
4 A Hamiltonian Krylov-Schur-Type Algorithm

- Derivation

5 Numerical Examples

- Quadratic Eigenvalue Problems
- Corner singularities
- Gyroscopic systems

6 Conclusions and Outlook
7 References

Introduction

Hamiltonian Eigenproblems

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Hamiltonian
Eigenproblems
Applications
Symplectic
Lanczos
The SR
Algorithm
HKS
Numerical
Examples
Conclusions and Outlook

References

Definition

Let $J=\left[\begin{array}{rr}0 & I_{n} \\ -I_{n} & 0\end{array}\right]$, then $H \in \mathbb{R}^{2 n \times 2 n}$ is called Hamiltonian, if
$(H J)^{T}=H J$.

Explicit block form of Hamiltonian matrices

$\left[\begin{array}{cc}A & G \\ Q & -A^{T}\end{array}\right]$, where $A, G, Q \in \mathbb{R}^{n \times n}$ and $G=G^{T}, Q=Q^{T}$.

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Hamiltonian Eigenproblems
Applications
Symplectic
Lanczos
The SR
Algorithm
HKS
Numerical
Examples
Conclusions and Outlook

References

Hamiltonian Eigensymmetry

Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then $\bar{\lambda},-\lambda,-\bar{\lambda}$ are eigenvalues of H, too.

Introduction

Large-Scale Hamiltonian Eigenproblems

Peter Benner
itroduction
Hamiltonian Eigenproblems
Applications
Symplectic Lanczos

The SR Algorithm HKS

Numerical Examples

Hamiltonian Eigensymmetry

Hamiltonian matrices exhibit the Hamiltonian eigensymmetry: if λ is a finite eigenvalue of H, then $\bar{\lambda},-\lambda,-\bar{\lambda}$ are eigenvalues of H, too.

Typical Hamiltonian spectrum:

Hamiltonian Eigenproblems

Large-Scale Hamiltonian Eigenproblems

Peter Benner
ntroduction
Hamiltonian
Eigenproblems
Applications
Symplectic Lanczos

The SR Algorithm HKS

Numerical Examples

Conctusions and Outlook

References

Goal

Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of H, then $\tilde{\lambda},-\tilde{\lambda},-\tilde{\lambda}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the QR, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition

```
S\in\mp@subsup{\mathbb{R}}{}{2n\times2n}\mathrm{ is symplectic iff }\mp@subsup{S}{}{\top}JS=J\mathrm{ , i.e., }\mp@subsup{S}{}{-1}=\mp@subsup{J}{}{\top}\mp@subsup{S}{}{\top}J\mathrm{ .}
```


Lemma

If H is Hamiltonian and S is symplectic, then

$$
S^{-1} H S
$$

is Hamiltonian, too.

Hamiltonian Eigenproblems

Large-Scale Hamiltonian Eigenproblems

Peter Benner
ntroduction
Hamiltonian Eigenproblems
Applications
Symplectic Lanczos

Goal

Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of H, then $\bar{\lambda},-\tilde{\lambda},-\bar{\lambda}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the QR, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition

$$
S \in \mathbb{R}^{2 n \times 2 n} \text { is symplectic iff } \quad S^{\top} J S=J \text {, i.e., } S^{-1}=J^{\top} S^{\top} J .
$$

Lemma

If H is Hamiltonian and S is symplectic, then

$$
S^{-1} H S
$$

is Hamiltonian, too.

Hamiltonian Eigenproblems

Goal

Structure-preserving algorithm, i.e., if $\tilde{\lambda}$ is a computed eigenvalue of H, then $\bar{\lambda},-\tilde{\lambda},-\bar{\lambda}$ should also be computed eigenvalues.

Goal cannot be achieved by general methods for matrices or matrix pencils like the QR, Lanczos, Arnoldi algorithms!

For an algorithm based on similarity transformations, the goal is achieved if the Hamiltonian structure is preserved.

Definition

$$
S \in \mathbb{R}^{2 n \times 2 n} \text { is symplectic iff } S^{\top} J S=J \text {, i.e., } S^{-1}=J^{\top} S^{\top} J .
$$

Lemma

If H is Hamiltonian and S is symplectic, then

$$
S^{-1} H S
$$

is Hamiltonian, too.

Introduction

Applications

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Hamiltonian
Eigenproblems
Applications
Symplectic Lanczos

The SR Algorithm

Hamiltonian eigenproblems arise in many different applications, e.g.:
■ Systems and control

- Model reduction
- Computational physics: exponential integrators for Hamiltonian dynamics.
[Eirola '03, Lopez/Simoncini '06]
- Quantum chemistry:
computing excitation energies in many-particle systems using random phase approximation (RPA).
■ Quadratic eigenvalue problems with Hamiltonian symmetry:
- computation of corner singularities in 3D anisotropic elastic structures
- gyroscopic systems
- vibro-acoustics
- optical waveguide design
[Apel/Mehrmann/Watkins '01]; [Lancaster '99,...]; [Maess/Gaul '05]; [Schmidt et al '03].

The Symplectic Lanczos Algorithm

- computes partial J-tridiagonalization;

■ provides a symplectic (J-orthogonal) Lanczos basis $V_{k} \in \mathbb{R}^{2 n \times 2 k}$, i.e., $V_{k}^{T} J_{n} V_{k}=J_{k}$;

■ was derived in several variants: [Freund/Mehrmann '94, Ferng/Lin/Wang '97, B./Fassbender '97, Watkins '04];

■ requires re-J-orthogonalization using, e.g., modified symplectic Gram-Schmidt;

- can be restarted implicitly using implicit SR steps [B./FASSBENDER '97];
■ exhibits convergence problems without locking \& purging.

The Hamiltonian J-Tridiagonal Form
 or Hamiltonian J-Hessenberg Form

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR
Algorithm
HKS
Numerical
Examples

Conclusions and Outlook

References

- can be computed by symplectic similarity $T_{n}=S^{-1} H S$ almost always,

■ is computed partially by symplectic Lanczos process, based on symplectic Lanczos recursion

$$
H V_{k}=V_{k} T_{k}+\zeta_{k+1} v_{k+1} e_{2 k}^{T}, \quad V_{k}=[S(:, 1: k), S(:, n+1: n+k)]
$$

Theorem

If $T_{n}=S^{-1} H S$ is in Hamiltonian J-tridiagonal form, then

$$
K(H, 2 n-1, v)=S R \quad \text { with } \quad s_{1}=v
$$

is an SR decomposition of the Krylov matrix

$$
K(H, 2 n-1, v):=\left[v, H v, \ldots, H^{2 n-1} v\right] .
$$

If R is nonsingular, then T is unreduced, i.e., $\zeta_{j} \neq 0$ for all j.

$$
\begin{aligned}
& \text { Column-wise evaluation of } H S=S T_{n} \text { yields }\left(S:=\left[v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right]\right) \\
& \qquad \begin{aligned}
H v_{k}= & \delta_{k} v_{k}+\nu_{k} w_{k} \quad \Longleftrightarrow \quad \nu_{k} w_{k}=H v_{k}-\delta_{k} v_{k}=: \widetilde{w}_{k}, \\
H w_{k}= & \zeta_{m} v_{k-1}+\beta_{k} v_{k}-\delta_{k} w_{k}+\zeta_{k+1} v_{k+1} \\
& \Longleftrightarrow \quad \zeta_{k+1} v_{k+1}=H w_{k}-\zeta_{k} v_{k-1}-\beta_{k} v_{k}+\delta_{k} w_{k}=: \widetilde{v}_{k+1} .
\end{aligned}
\end{aligned}
$$

\Longrightarrow Choose parameters $\delta_{k}, \beta_{k}, \nu_{k}, \zeta_{k}$ such that resulting algorithm computes symplectic (J-orthogonal) basis of Krylov subspace

$$
\mathcal{K}\left(H, v_{1}, 2 m\right)=\operatorname{span}\left\{v_{1}, H v_{1}, \ldots, H^{2 m-1} v_{1}\right\} .
$$

The Symplectic Lanczos Algorithm

Derivation using Partial J-Tridiagonalization

Theorem

If $T_{n}=S^{-1} H S$ is in Hamiltonian J-tridiagonal form, then

$$
K(H, 2 n-1, v)=S R \quad \text { with } \quad s_{1}=v
$$

is an SR decomposition of the Krylov matrix

$$
K(H, 2 n-1, v):=\left[v, H v, \ldots, H^{2 n-1} v\right] .
$$

If R is nonsingular, then T is unreduced, i.e., $\zeta_{j} \neq 0$ for all j.
Column-wise evaluation of $H S=S T_{n}$ yields $\left(S:=\left[v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right]\right)$

$$
\begin{aligned}
H v_{k}= & \delta_{k} v_{k}+\nu_{k} w_{k} \quad \Longleftrightarrow \quad \nu_{k} w_{k}=H v_{k}-\delta_{k} v_{k}=: \widetilde{w}_{k} \\
H w_{k}= & \zeta_{m} v_{k-1}+\beta_{k} v_{k}-\delta_{k} w_{k}+\zeta_{k+1} v_{k+1} \\
& \Longleftrightarrow \quad \zeta_{k+1} v_{k+1}=H w_{k}-\zeta_{k} v_{k-1}-\beta_{k} v_{k}+\delta_{k} w_{k}=: \widetilde{v}_{k+1}
\end{aligned}
$$

\Longrightarrow Choose parameters $\delta_{k}, \beta_{k}, \nu_{k}, \zeta_{k}$ such that resulting algorithm computes symplectic (J-orthogonal) basis of Krylov subspace

$$
\mathcal{K}\left(H, v_{1}, 2 m\right)=\operatorname{span}\left\{v_{1}, H v_{1}, \ldots, H^{2 m-1} v_{1}\right\}
$$

The Symplectic Lanczos Algorithm

Algorithm based on symplectic Lanczos recursion $H V_{k}=V_{k} T_{k}+\zeta_{k+1} v_{k+1} e_{2 k}^{T}$

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR

Algorithm
HKS
Numerica Examples Outlook

References

INPUT: $\quad H \in \mathbb{R}^{2 n \times 2 n}, m \in \mathbb{N}$, and start vector $\tilde{v}_{1} \neq 0 \in \mathbb{R}^{2 n}$. OUTPUT: $\quad T_{m} \in \mathbb{R}^{2 m \times 2 m}, V_{m} \in \mathbb{R}^{2 n \times 2 m}, \zeta_{m+1}$, and v_{m+1}.
$1 \zeta_{1}=\left\|\tilde{v}_{1}\right\|_{2}$
$2 v_{1}=\frac{1}{\zeta_{1}} \tilde{v}_{1}$
3 FOR $k=1,2, \ldots, m$
(a) $t=H v_{k}, u=H w_{k}$
(b) $\delta_{k}=\left\langle t, v_{k}\right\rangle$
(c) $\tilde{w}_{k}=t-\delta_{k} v_{k}$
(d) $\nu_{k}=\left\langle t, v_{k}\right\rangle_{J}$
(e) $w_{k}=\frac{1}{\nu_{k}} \tilde{w}_{k}$
(f) $\beta_{k}=-\left\langle u, w_{k}\right\rangle_{J}$
(g) $\tilde{v}_{k+1}=u-\zeta_{k} v_{k-1}-\beta_{k} v_{k}+\delta_{k} w_{k}$
(h) $\zeta_{k+1}=\left\|\tilde{v}_{k+1}\right\|_{2}$
(i) $v_{k+1}=\frac{1}{\zeta_{k+1}} \tilde{v}_{k+1}$

ENDFOR
Note: 3(b) yields orthogonality of v_{k}, w_{k} [Ferng/Lin/Wang '97] and optimal conditioning of Lanczos basis [B. '03] if $\|v\|_{2}=1$ is forced.

The Symplectic Lanczos Algorithm

Algorithm based on symplectic Lanczos recursion $H V_{k}=V_{k} T_{k}+\zeta_{k+1} v_{k+1} e_{2 k}^{T}$

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR Algorithm HKS

Numerical Examples

Conclusions and Outlook

References

INPUT: $\quad H \in \mathbb{R}^{2 n \times 2 n}, m \in \mathbb{N}$, and start vector $\tilde{v}_{1} \neq 0 \in \mathbb{R}^{2 n}$. OUTPUT: $\quad T_{m} \in \mathbb{R}^{2 m \times 2 m}, V_{m} \in \mathbb{R}^{2 n \times 2 m}, \zeta_{m+1}$, and v_{m+1}.
$1 \zeta_{1}=\left\|\tilde{v}_{1}\right\|_{2}$
$2 v_{1}=\frac{1}{\zeta_{1}} \tilde{v}_{1}$
3 FOR $k=1,2, \ldots, m$
(a) $t=H v_{k}, u=H w_{k}$
(b) $\delta_{k}=\left\langle t, v_{k}\right\rangle$
(c) $\tilde{w}_{k}=t-\delta_{k} v_{k}$
(d) $\nu_{k}=\left\langle t, v_{k}\right\rangle_{J}$
(e) $w_{k}=\frac{1}{\nu_{k}} \tilde{w}_{k}$
(f) $\beta_{k}=-\left\langle u, w_{k}\right\rangle_{J}$
(g) $\tilde{v}_{k+1}=u-\zeta_{k} v_{k-1}-\beta_{k} v_{k}+\delta_{k} w_{k}$
(h) $\zeta_{k+1}=\left\|\tilde{v}_{k+1}\right\|_{2}$
(i) $v_{k+1}=\frac{1}{\zeta_{k+1}} \tilde{v}_{k+1}$

ENDFOR
Note: 3(b) yields orthogonality of v_{k}, w_{k} [Ferng/Lin/Wang '97] and optimal conditioning of Lanczos basis [B. '03] if $\|v\|_{2}=1$ is forced.

The Symplectic Lanczos Algorithm

Implicit Restarts for given k-step Lanczos recursion $H V_{k}=V_{k} T_{k}+\zeta_{k+1} v_{k+1} e_{2 k}^{T}$.

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR Algorithm HKS

Numerical Examples

Conclusions and Outlook

References

Extend Lanczos recursion by p symplectic Lanczos steps, yielding

$$
H V_{k+p}=V_{k+p} T_{k+p}+\zeta_{k+p+1} v_{k+p+1} e_{2(k+p)}^{T}
$$

Let $S_{k+p} \in \mathbb{R}^{2(k+p) \times 2(k+p)}$ be symplectic. Then with

$$
H \underbrace{\left(V_{k+p} S_{k+p}\right)}_{\hat{V}_{k+p}}=\underbrace{\left(V_{k+p} S_{k+p}\right)}_{\hat{V}_{k+p}} \underbrace{\left(S_{k+p}^{-1} T_{k+p} S_{k+p}\right)}_{\hat{T}_{k+p}}+\zeta_{k+p+1} V_{k+p+1} e_{2(k+p)}^{T} S_{k+p}
$$

\hat{V}_{k+p} is J-orthogonal, \hat{T}_{k+p} is Hamiltonian. Thus,
(*) $H \hat{V}_{k+p}=\hat{V}_{k+p} \hat{T}_{k+p}+\zeta_{k+p+1} v_{k+p+1} s_{k+p}^{\top} \quad\left(s_{k+p}^{\top}:=S_{k+p}(2(k+p),:)\right)$.
Obtain new Lanczos recursion from (*) by truncating back to k and choosing S_{k+p} so that

- \hat{T}_{k} is Hamiltonian J-tridiagonal,
- the residual term $\hat{\zeta}_{k+1} \hat{v}_{k+1} \hat{s}_{k}$ has the form vector $\times e_{2 k}$
$\Longrightarrow \quad$ implicit $S R$ steps with structure-induced shift polynomials, e.g., $p_{2}(x)=(x-\mu)(x+\mu)$ or $p_{4}(x)=p_{2}(x) p_{2}(x)$.

The Symplectic Lanczos Algorithm

Implicit Restarts for given k-step Lanczos recursion $H V_{k}=V_{k} T_{k}+\zeta_{k+1} v_{k+1} e_{2 k}^{T}$.

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Symplectic Lanczos

The SR Algorithm

Extend Lanczos recursion by p symplectic Lanczos steps, yielding

$$
H V_{k+p}=V_{k+p} T_{k+p}+\zeta_{k+p+1} v_{k+p+1} e_{2(k+p)}^{T}
$$

Let $S_{k+p} \in \mathbb{R}^{2(k+p) \times 2(k+p)}$ be symplectic. Then with

$$
H \underbrace{\left(V_{k+p} S_{k+p}\right)}_{\hat{V}_{k+p}}=\underbrace{\left(V_{k+p} S_{k+p}\right)}_{\hat{V}_{k+p}} \underbrace{\left(S_{k+p}^{-1} T_{k+p} S_{k+p}\right)}_{\hat{T}_{k+p}}+\zeta_{k+p+1} v_{k+p+1} e_{2(k+p)}^{T} S_{k+p}
$$

\hat{V}_{k+p} is J-orthogonal, \hat{T}_{k+p} is Hamiltonian. Thus,
(*) $H \hat{V}_{k+p}=\hat{V}_{k+p} \hat{T}_{k+p}+\zeta_{k+p+1} v_{k+p+1} s_{k+p}^{T} \quad\left(s_{k+p}^{T}:=S_{k+p}(2(k+p),:)\right)$.
Obtain new Lanczos recursion from (*) by truncating back to k and choosing S_{k+p} so that

- \hat{T}_{k} is Hamiltonian J-tridiagonal,

■ the residual term $\hat{\zeta}_{k+1} \hat{v}_{k+1} \hat{s}_{k}$ has the form vector $\times e_{2 k}$.

\Longrightarrowimplicit SR steps with structure-induced shift polynomials, e.g., $p_{2}(x)=(x-\mu)(x+\mu)$ or $p_{4}(x)=p_{2}(x) p_{2}(x)$.

The Symplectic Lanczos Algorithm

Implicit Restarts for given k-step Lanczos recursion $H V_{k}=V_{k} T_{k}+\zeta_{k+1} V_{k+1} e_{2 k}^{T}$.

Extend Lanczos recursion by p symplectic Lanczos steps, yielding

$$
H V_{k+p}=V_{k+p} T_{k+p}+\zeta_{k+p+1} v_{k+p+1} e_{2(k+p)}^{T}
$$

Let $S_{k+p} \in \mathbb{R}^{2(k+p) \times 2(k+p)}$ be symplectic. Then with

$$
H \underbrace{\left(V_{k+p} S_{k+p}\right)}_{\hat{V}_{k+p}}=\underbrace{\left(V_{k+p} S_{k+p}\right)}_{\hat{V}_{k+p}} \underbrace{\left(S_{k+p}^{-1} T_{k+p} S_{k+p}\right)}_{\hat{T}_{k+p}}+\zeta_{k+p+1} v_{k+p+1} e_{2(k+p)}^{T} S_{k+p}
$$

\hat{V}_{k+p} is J-orthogonal, \hat{T}_{k+p} is Hamiltonian. Thus,
(*) $H \hat{V}_{k+p}=\hat{V}_{k+p} \hat{T}_{k+p}+\zeta_{k+p+1} v_{k+p+1} s_{k+p}^{T} \quad\left(s_{k+p}^{T}:=S_{k+p}(2(k+p),:)\right)$.
Obtain new Lanczos recursion from (*) by truncating back to k and choosing S_{k+p} so that

- \hat{T}_{k} is Hamiltonian J-tridiagonal,

■ the residual term $\hat{\zeta}_{k+1} \hat{v}_{k+1} \hat{s}_{k}$ has the form vector $\times e_{2 k}$.
$\Longrightarrow \quad$ implicit SR steps with structure-induced shift polynomials, e.g.,

$$
p_{2}(x)=(x-\mu)(x+\mu) \text { or } p_{4}(x)=p_{2}(x) \overline{p_{2}(x)}
$$

The SR Algorithm

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR Algorithm HKS

Numerical Examples Outlook

References

- Bulge-chasing algorithm of GR class based on symplectic (J-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic \times "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.
[Bunse-Gerstner/Mehrmann '86]
- Preserves the Hamiltonian J-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of $p_{2}(H)=(H-\mu I)(H+\mu I)$ or $p_{4}(H)=p_{2}(H) p_{2}(H)$.
- Converges to Schur-like form with local cubic convergence rate.
[Watkins/Elsner '91]
- Can be implemented using the $4 n-1$ parameters of the J-tridiagonal form only \rightsquigarrow parametric SR algorithm.
- Bulge-chasing algorithm of GR class based on symplectic (J-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic \times "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.
[Bunse-Gerstner/Mehrmann '86]
- Preserves the Hamiltonian J-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of $p_{2}(H)=(H-\mu I)(H+\mu I)$ or $p_{4}(H)=p_{2}(H) p_{2}(H)$.
■ Converges to Schur-like form with local cubic convergence rate.
[Watkins/Elsner '91]
- Can be implemented using the $4 n-1$ parameters of the J-tridiagonal form only \rightsquigarrow parametric SR algorithm.

The SR Algorithm

- Bulge-chasing algorithm of GR class based on symplectic (J-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic \times "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.
[Bunse-Gerstner/Mehrmann '86]
- Preserves the Hamiltonian J-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of $p_{2}(H)=(H-\mu I)(H+\mu I)$ or $p_{4}(H)=p_{2}(H) \overline{p_{2}(H)}$.
- Converges to Schur-like form with local cubic convergence rate.
[Watkins/Elsner '91]
- Can be implemented using the $4 n-1$ parameters of the J-tridiagonal form only \rightsquigarrow parametric SR algorithm.

The SR Algorithm

- Bulge-chasing algorithm of GR class based on symplectic (J-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic \times "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

> [Bunse-Gerstner/Mehrmann '86]

- Preserves the Hamiltonian J-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of $p_{2}(H)=(H-\mu I)(H+\mu I)$ or $p_{4}(H)=p_{2}(H) \overline{p_{2}(H)}$.
- Converges to Schur-like form with local cubic convergence rate.
[Watkins/Elsner '91]
- Can be implemented using the $4 n-1$ parameters of the J-tridiagonal form only \rightsquigarrow parametric SR algorithm.

The SR Algorithm

- Bulge-chasing algorithm of GR class based on symplectic (J-orthogonal) similarity transformations. [DELLA-Dora '73]
■ Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic \times "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.
[Bunse-Gerstner/Mehrmann '86]
■ Preserves the Hamiltonian J-tridiagonal form.
■ Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of $p_{2}(H)=(H-\mu I)(H+\mu I)$ or $p_{4}(H)=p_{2}(H) \overline{p_{2}(H)}$.
■ Converges to Schur-like form with local cubic convergence rate. [WATkins/Elsner '91]
- Can be implemented using the $4 n-1$ parameters of the J-tridiagonal form only \rightsquigarrow parametric SR algorithm.

The SR Algorithm

- Bulge-chasing algorithm of GR class based on symplectic (J-orthogonal) similarity transformations. [Della-Dora '73]
- Algorithmic details analogous to QR algorithm, replace QR decomposition by SR (symplectic \times "psychologically" upper triangular) decomposition, using orthosymplectic Givens and Householder as well as symplectic Gaussian eliminations.

[Bunse-Gerstner/Mehrmann '86]

- Preserves the Hamiltonian J-tridiagonal form.
- Uses implicit double or quadruple shift SR steps which correspond to SR decomposition of $p_{2}(H)=(H-\mu I)(H+\mu I)$ or $p_{4}(H)=p_{2}(H) \overline{p_{2}(H)}$.
- Converges to Schur-like form with local cubic convergence rate. [Watkins/Elsner '91]
- Can be implemented using the $4 n-1$ parameters of the J-tridiagonal form only \rightsquigarrow parametric SR algorithm.
[FASSBENDER '07]

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR
Algorithm
HKS
Numerica
Examples

Conclusions and Outlook

References

SR iterates converge to

■ the 1×1 blocks A_{j} represent real eigenvalues with $\lambda_{j}<0$,
■ the 2×2 blocks A_{j} represent complex eigenvalues with $\operatorname{Re}\left(\lambda_{j}\right)<0$,
■ the blocks $\left[\begin{array}{cc}A_{j} & G_{j} \\ Q_{j} & -A_{j}^{T}\end{array}\right]$ represent purely imaginary eigenvalues.

- Re-ordering of eigenvalues requires (block-)permutation only!

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR
Algorithm
HKS
Numerica
Examples

Conclusions and Outlook

References

SR iterates converge to

- the 1×1 blocks A_{j} represent real eigenvalues with $\lambda_{j}<0$,

■ the 2×2 blocks A_{j} represent complex eigenvalues with $\operatorname{Re}\left(\lambda_{j}\right)<0$,
■ the blocks $\left[\begin{array}{cc}A_{j} & G_{j} \\ Q_{j} & -A_{j}^{T}\end{array}\right]$ represent purely imaginary eigenvalues.
■ Re-ordering of eigenvalues requires (block-)permutation only!

A Hamiltonian Krylov-Schur-Type Algorithm

 MotivationLarge-Scale Hamiltonian Eigenproblems

Peter Benner

■ To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for

- locking: deflate converged and wanted Ritz pairs,
- purging: deflate converged but unwanted Ritz pairs,
- Deflation, locking \& purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.
[Lehoucq/Sorensen '96, Sorensen '02]
- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
■ Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

$$
A V_{k}=V_{k} H_{k}+r_{k+1} e_{k}^{T} \quad \text { with upper Hessenberg matrix } H_{k}
$$

use Krylov-Schur decomposition

$$
A W_{k}=W_{k} T_{k}+r_{k+1} t_{k+1}^{T} \text { with } T_{k} \text { in (real) Schur form }
$$

for locking \& purging.

A Hamiltonian Krylov-Schur-Type Algorithm Motivation

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
- locking: deflate converged and wanted Ritz pairs,
- purging: deflate converged but unwanted Ritz pairs, but re-($J-)$ orthogonalize against converged Ritz vectors!
- Deflation, locking \& purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.
[Lehoucq/Sorensen '96, Sorensen '02]
- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
■ Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

$$
A V_{k}=V_{k} H_{k}+r_{k+1} e_{k}^{T} \quad \text { with upper Hessenberg matrix } H_{k}
$$

use Krylov-Schur decomposition

$$
A W_{k}=W_{k} T_{k}+r_{k+1} t_{k+1}^{T} \quad \text { with } T_{k} \text { in (real) Schur form }
$$

for locking \& purging.

A Hamiltonian Krylov-Schur-Type Algorithm Motivation

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
- locking: deflate converged and wanted Ritz pairs,
- purging: deflate converged but unwanted Ritz pairs, but re-($J-)$ orthogonalize against converged Ritz vectors!
- Deflation, locking \& purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.
[Lehoucq/Sorensen '96, Sorensen '02]
- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
■ Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

$$
A V_{k}=V_{k} H_{k}+r_{k+1} e_{k}^{T} \quad \text { with upper Hessenberg matrix } H_{k}
$$

use Krylov-Schur decomposition

$$
A W_{k}=W_{k} T_{k}+r_{k+1} t_{k+1}^{T} \quad \text { with } T_{k} \text { in (real) Schur form }
$$

\square

A Hamiltonian Krylov-Schur-Type Algorithm

 MotivationLarge-Scale Hamiltonian Eigenproblems

Peter Benner

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
- locking: deflate converged and wanted Ritz pairs,
- purging: deflate converged but unwanted Ritz pairs, but re-($J-$) orthogonalize against converged Ritz vectors!
- Deflation, locking \& purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.
[LehoucQ/Sorensen '96, Sorensen '02].
- Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
- Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.
$A V_{k}=V_{k} H_{k}+r_{k+1} e_{k}^{T} \quad$ with upper Hessenberg matrix H_{k}
use Krylov-Schur decomposition

$$
A W_{k}=W_{k} T_{k}+r_{k+1} t_{k+1}^{T} \quad \text { with } T_{k} \text { in (real) Schur form }
$$

A Hamiltonian Krylov-Schur-Type Algorithm

Motivation

- To enhance convergence of implicitly restarted Krylov subspace methods need deflation strategies for
- locking: deflate converged and wanted Ritz pairs,
- purging: deflate converged but unwanted Ritz pairs, but re-($J-)$ orthogonalize against converged Ritz vectors!
- Deflation, locking \& purging technically involved and hard to realize for implicitly restarted Arnoldi/Lanczos.
[LehoucQ/Sorensen '96, Sorensen '02].
■ Deflation strategies do not carry over to implicitly restarted symplectic Lanczos!
■ Stewart's idea (SIMAX '01): rather than using Arnoldi decomposition (recursion), i.e.

$$
A V_{k}=V_{k} H_{k}+r_{k+1} e_{k}^{T} \quad \text { with upper Hessenberg matrix } H_{k}
$$

use Krylov-Schur decomposition

$$
A W_{k}=W_{k} T_{k}+r_{k+1} t_{k+1}^{T} \quad \text { with } T_{k} \text { in (real) Schur form }
$$

for locking \& purging.

A Hamiltonian Krylov-Schur-Type Algorithm

 Krylov-Schur for symplectic LanczosAssume we have constructed a symplectic Lanczos decomposition of length $2(k+p)=2 m$ of the form

$$
H V_{m}=V_{m} T_{m}+\zeta_{m+1} V_{m+1} e_{2 m}^{T} .
$$

Definition

$$
H \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\zeta}_{m+1} \hat{V}_{m+1} \hat{s}_{m}^{T}
$$

is a Hamiltonian Krylov-Schur-type decomposition if

- $\operatorname{rank}\left(\left[\hat{V}_{m}, v_{m+1}\right]\right)=2 m+1$,
- \hat{V}_{m} is J-orthogonal,
- \hat{T}_{m} is in Hamiltonian Schur-type form.

Definition

$$
H V_{m}=V_{m} T_{m}+\zeta_{m+1} V_{m+1} e_{2 m}^{T} .
$$

$$
H \hat{V}_{m}=\hat{V}_{m} \hat{T}_{m}+\hat{\zeta}_{m+1} \hat{v}_{m+1} \hat{s}_{m}^{T}
$$

is a Hamiltonian Krylov-Schur-type decomposition if

- $\operatorname{rank}\left(\left[\hat{V}_{m}, v_{m+1}\right]\right)=2 m+1$,
- \hat{V}_{m} is J-orthogonal,
- \hat{T}_{m} is in Hamiltonian Schur-type form.

A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition \Rightarrow Hamiltonian Krylov-Schur-type decomposition

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR Algorithm

HKS
Derivation
Numerical Examples

Applying $S R$ algorithm to T_{m} yields symplectic matrix S_{m} such that $\hat{T}_{m}:=S_{m}{ }^{-1} T_{m} S_{m}$ has Hamiltonian Schur-like form.

As noted before, \hat{T}_{m} can be ordered by J-orthogonal permutations so that converged and wanted/unwanted Ritz values appear in the leading/trailing blocks,

$$
\hat{T}_{m}=\left[\begin{array}{cc|cc}
A_{1} & & G_{1} & \\
& A_{2} & & G_{2} \\
\hline Q_{1} & & -A_{1}^{T} & \\
& Q_{2} & & -A_{2}^{T}
\end{array}\right] .
$$

A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition \Rightarrow Hamiltonian Krylov-Schur-type decomposition

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic
Lanczos
The SR
Algorithm
HKS
Derivation
Numerical Examples

Applying $S R$ algorithm to T_{m} yields symplectic matrix S_{m} such that $\hat{T}_{m}:=S_{m}{ }^{-1} T_{m} S_{m} \quad$ has Hamiltonian Schur-like form \rightsquigarrow

$$
\begin{aligned}
H\left(V_{m} S_{m}\right) & =\left(V_{m} S_{m}\right)\left(S_{m}^{-1} T_{m} S_{m}\right)+\zeta_{m+1} v_{m+1} e_{2 m}^{T} S_{m} \\
& =\left[V_{k}, V_{p}, W_{k}, W_{p}\right]\left[\begin{array}{cc|cc}
A_{1} & & G_{1} & \\
& A_{2} & & G_{2} \\
\hline Q_{1} & & -A_{1}^{T} & \\
& Q_{2} & & -A_{2}^{T}
\end{array}\right]+\zeta_{m+1} v_{m+1} s_{m}^{T}
\end{aligned}
$$

Note: in case of deflation (\rightsquigarrow locking possible), $s_{m}^{T}=\left[0, s_{p, 1}^{T}, 0, s_{p, 2}^{\top}\right]$.

A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition \Rightarrow Hamiltonian Krylov-Schur-type decomposition

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic
Lanczos
The SR Algorithm

HKS
Derivation
Numerical Examples

Applying $S R$ algorithm to T_{m} yields symplectic matrix S_{m} such that $\hat{T}_{m}:=S_{m}{ }^{-1} T_{m} S_{m}$ has Hamiltonian Schur-like form

$$
\begin{aligned}
H\left(V_{m} S_{m}\right) & =\left(V_{m} S_{m}\right)\left(S_{m}^{-1} T_{m} S_{m}\right)+\zeta_{m+1} v_{m+1} e_{2 m}^{T} S_{m} \\
& =\left[V_{k}, V_{p}, W_{k}, W_{p}\right]\left[\begin{array}{cc|cc}
A_{1} & & G_{1} & \\
& A_{2} & & G_{2} \\
\hline Q_{1} & & -A_{1}^{T} & \\
& Q_{2} & & -A_{2}^{T}
\end{array}\right]+\zeta_{m+1} v_{m+1} S_{m}^{T}
\end{aligned}
$$

Note: in case of deflation (\rightsquigarrow locking possible), $s_{m}^{T}=\left[0, s_{p, 1}^{T}, 0, s_{p, 2}^{\top}\right]$.
Purging: continue with Hamiltonian Krylov-Schur-type decomposition

$$
H\left[V_{k}, W_{k}\right]=\left[V_{k}, W_{k}\right] T_{k}+\zeta_{m+1} v_{m+1} s_{k}^{T}
$$

A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition \Rightarrow Hamiltonian Krylov-Schur-type decomposition

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic
Lanczos
The SR Algorithm HKS
Derivation
Numerical Examples

Applying $S R$ algorithm to T_{m} yields symplectic matrix S_{m} such that $\hat{T}_{m}:=S_{m}{ }^{-1} T_{m} S_{m}$ has Hamiltonian Schur-like form

$$
\begin{aligned}
H\left(V_{m} S_{m}\right) & =\left(V_{m} S_{m}\right)\left(S_{m}^{-1} T_{m} S_{m}\right)+\zeta_{m+1} v_{m+1} e_{2 m}^{T} S_{m} \\
& =\left[V_{k}, V_{p}, W_{k}, W_{p}\right]\left[\begin{array}{cc|cc}
A_{1} & & G_{1} & \\
& A_{2} & & G_{2} \\
\hline Q_{1} & & -A_{1}^{T} & \\
& Q_{2} & & -A_{2}^{T}
\end{array}\right]+\zeta_{m+1} v_{m+1} S_{m}^{T}
\end{aligned}
$$

Note: in case of deflation (\rightsquigarrow locking possible), $s_{m}^{T}=\left[0, s_{p, 1}^{T}, 0, s_{p, 2}^{\top}\right]$.
Purging: continue with Hamiltonian Krylov-Schur-type decomposition

$$
H\left[V_{k}, W_{k}\right]=\left[V_{k}, W_{k}\right] T_{k}+\zeta_{m+1} v_{m+1} s_{k}^{T}
$$

Locking: continue with Hamiltonian Krylov-Schur-type decomposition

$$
H\left[V_{p}, W_{p}\right]=\left[V_{p}, W_{p}\right] T_{p}+\zeta_{m+1} v_{m+1} s_{p}^{T}
$$

A Hamiltonian Krylov-Schur-Type Algorithm

Symplectic Lanczos decomposition \Rightarrow Hamiltonian Krylov-Schur-type decomposition

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic
Lanczos
The SR Algorithm HKS
Derivation
Numerical Examples

Applying $S R$ algorithm to T_{m} yields symplectic matrix S_{m} such that $\hat{T}_{m}:=S_{m}{ }^{-1} T_{m} S_{m}$ has Hamiltonian Schur-like form

$$
\begin{aligned}
H\left(V_{m} S_{m}\right) & =\left(V_{m} S_{m}\right)\left(S_{m}^{-1} T_{m} S_{m}\right)+\zeta_{m+1} v_{m+1} e_{2 m}^{T} S_{m} \\
& =\left[V_{k}, V_{p}, W_{k}, W_{p}\right]\left[\begin{array}{cc|cc}
A_{1} & & G_{1} & \\
& A_{2} & & G_{2} \\
\hline Q_{1} & & -A_{1}^{T} & \\
& Q_{2} & & -A_{2}^{T}
\end{array}\right]+\zeta_{m+1} v_{m+1} s_{m}^{T}
\end{aligned}
$$

Note: in case of deflation (\rightsquigarrow locking possible), $s_{m}^{T}=\left[0, s_{p, 1}^{T}, 0, s_{p, 2}^{\top}\right]$.
Purging: continue with Hamiltonian Krylov-Schur-type decomposition

$$
H\left[V_{k}, W_{k}\right]=\left[V_{k}, W_{k}\right] T_{k}+\zeta_{m+1} v_{m+1} s_{k}^{T}
$$

Locking: continue with Hamiltonian Krylov-Schur-type decomposition

$$
H\left[V_{p}, W_{p}\right]=\left[V_{p}, W_{p}\right] T_{p}+\zeta_{m+1} v_{m+1} s_{p}^{\top}
$$

In order to expand subspace back to length m, need to return to symplectic Lanczos decomposition!

A Hamiltonian Krylov-Schur-Type Algorithm

Hamiltonian Krylov-Schur-type decomposition \Rightarrow symplectic Lanczos decomposition

Theorem

Every Hamiltonian Krylov-Schur-type decomposition is equivalent to a symplectic Lanczos decomposition.

Constructive proof:
Given a Hamiltonian Krylov-Schur-type decomposition of length k,

$$
H U=U T+u s^{T}
$$

$1 J$-orthogonalize u w.r.t. U so that $U^{\top} J u=0 \Rightarrow \hat{u}:=\frac{1}{\gamma}(u-U t)$,

$$
H U=U T+(\gamma \hat{u}+U t) s^{T}=U\left(T+t s^{T}\right)+\gamma \hat{u} s^{T}=: U B+\hat{u} \hat{s}^{T} .
$$

Theorem

Every Hamiltonian Krylov-Schur-type decomposition is equivalent to a symplectic Lanczos decomposition.

Constructive proof:
Given a Hamiltonian Krylov-Schur-type decomposition of length k,

$$
H U=U T+u s^{T}
$$

$1 J$-orthogonalize u w.r.t. U so that $U^{T} J u=0 \Rightarrow H U=U B+\hat{u} \hat{s}^{T}$.
2 Compute orthogonal symplectic matrix W such that $W^{T} \hat{s}=\hat{\zeta} e_{2 k}^{T} \Rightarrow$

$$
H U W=U W\left(W^{T} B W\right)+\hat{u} \hat{s}^{T} W=: U W \tilde{B}+\hat{\zeta} \hat{u} e_{2 k}^{T}
$$

A Hamiltonian Krylov-Schur-Type Algorithm

Hamiltonian Krylov-Schur-type decomposition \Rightarrow symplectic Lanczos decomposition

Theorem

Every Hamiltonian Krylov-Schur-type decomposition is equivalent to a symplectic Lanczos decomposition.

Constructive proof:
Given a Hamiltonian Krylov-Schur-type decomposition of length k,

$$
H U=U T+u s^{T}
$$

$1 J$-orthogonalize u w.r.t. U so that $U^{T} J u=0 \Rightarrow H U=U B+\hat{u} \hat{s}^{T}$.
2 Compute orthogonal symplectic matrix W such that $W^{T} \hat{s}=\hat{\zeta} e_{2 k}^{T} \Rightarrow$

$$
H U W=U W \tilde{B}+\hat{\zeta} \hat{u} e_{2 k}^{T}
$$

3 Compute symplectic matrix S restoring J-tridiagonal form of \tilde{B}, i.e., $S^{-1} \tilde{B} S=\hat{T}$ is Hamiltonian J-tridiagonal and $e_{2 k}^{T} S=e_{2 k}^{T}$ (\rightsquigarrow row-wise bottom-to-top J-tridiagonalization) \Rightarrow

$$
H \underbrace{U W S}_{=: V}=\underbrace{U W S}_{=: V} \underbrace{S^{-1} \tilde{B} S}_{=\hat{T}}+\hat{\zeta} \hat{u} e_{2 k}^{T}
$$

is an equivalent symplectic Lanczos decomposition.

Algorithm HKS

1 Use k steps of symplectic Lanczos process to compute symplectic Lanczos decomposition

$$
H V_{k}=V_{k} T_{k}+\zeta_{k+1} v_{k+1} e_{2 k}^{T}
$$

2 Expand Krylov subspace to length $2(k+p)$ using p steps of symplectic Lanczos process,

$$
H V_{k+p}=V_{k+p} T_{k+p}+\zeta_{k+p+1} v_{k+p+1} e_{2(k+p)}^{T}
$$

3 Run (parametrized) SR algorithm on T_{k+p} to obtain Hamiltonian Krylov-Schur type decomposition

$$
H U_{k+p}=U_{k+p} \tilde{T}_{k+p}+\zeta_{k+p+1} v_{k+p+1} s_{k+p}^{\top}
$$

4 Re-order Hamiltonian Schur-type form as desired, deflate/purge, yielding new Hamiltonian Krylov-Schur type decomposition

$$
H \tilde{U}_{k}=\tilde{U}_{k} \tilde{T}_{k}+\tilde{\zeta}_{k+1} \tilde{v}_{k+1} \tilde{s}_{k}^{T}
$$

(In case of deflation of ℓ converged Ritz values, $k \leftarrow k-\ell$.)
5 Compute equivalent symplectic Lanczos decomposition

$$
H \hat{V}_{k}=\hat{V}_{k} \hat{T}_{k}+\hat{\zeta}_{k+1} \hat{v}_{k+1} e_{2 k}^{T}
$$

6 IF $k>0$, GOTO 2.

Numerical Examples
Quadratic Eigenvalue Problems

Quadratic Eigenproblems with Hamiltonian Symmetry

Peter Benner

Introduction
Symplectic Lanczos

The SR
Algorithm
HKS
Numerical
Examples
Quadratic
Eigenvalue
Problems
Corner
singularities
Gyroscopic systems

$$
\begin{gathered}
Q(\lambda) x:=\left(\lambda^{2} M+\lambda G+K\right) x=0 \\
\text { where } M=M^{T}, K=K^{T}, G=-G^{T}
\end{gathered}
$$

can be solved using linearization

$$
\left(\lambda\left[\begin{array}{cc}
M & 0 \\
0 & I
\end{array}\right]-\left[\begin{array}{cc}
-G & -K \\
I & 0
\end{array}\right]\right)\left[\begin{array}{l}
y \\
x
\end{array}\right]=0 \quad(y:=\lambda x)
$$

\rightsquigarrow unstructured (generalized) eigenproblem, spectral symmetry is destroyed in finite precision computations.

Numerical Examples

Quadratic Eigenvalue Problems

Quadratic Eigenproblems with Hamiltonian Symmetry

$$
\begin{gathered}
Q(\lambda) x:=\left(\lambda^{2} M+\lambda G+K\right) x=0 \\
\text { where } M=M^{T}, K=K^{T}, G=-G^{T}
\end{gathered}
$$

can be solved using linearization

$$
(\lambda N-H) z=\left(\lambda\left[\begin{array}{ll}
I & G \\
0 & I
\end{array}\right]-\left[\begin{array}{cc}
0 & -K \\
M^{-1} & 0
\end{array}\right]\right)\left[\begin{array}{c}
y \\
x
\end{array}\right]=0 \quad(y:=\lambda M x)
$$

\rightsquigarrow skew-Hamiltonian/Hamiltonian eigenproblem, i.e., N is skew-Hamiltonian $\left((N J)^{T}=-(N J)^{T}\right), H$ is Hamiltonian;

Numerical Examples

Quadratic Eigenvalue Problems

Quadratic Eigenproblems with Hamiltonian Symmetry

$$
\begin{aligned}
Q(\lambda) x & :=\left(\lambda^{2} M+\lambda G+K\right) x=0 \\
\text { where } M & =M^{T}, K=K^{T}, G=-G^{T}
\end{aligned}
$$

can be solved using linearization

$$
(\lambda N-H) z=\left(\lambda\left[\begin{array}{ll}
I & G \\
0 & l
\end{array}\right]-\left[\begin{array}{cc}
0 & -K \\
M^{-1} & 0
\end{array}\right]\right)\left[\begin{array}{c}
y \\
x
\end{array}\right]=0 \quad(y:=\lambda M x)
$$

\rightsquigarrow skew-Hamiltonian/Hamiltonian eigenproblem, i.e., N is skew-Hamiltonian $\left((N J)^{T}=-(N J)^{T}\right), H$ is Hamiltonian;
\rightsquigarrow spectral symmetry can be preserved in finite precision computations if structure-preserving algorithm is used!
\rightsquigarrow Skew-Hamiltonian Implicitly Restarted Arnoldi (SHIRA) [Mehrmann/Watkins '01].

Numerical Examples

Quadratic Eigenvalue Problems

Quadratic Eigenproblems with Hamiltonian Symmetry

$$
\begin{aligned}
Q(\lambda) x & :=\left(\lambda^{2} M+\lambda G+K\right) x=0 \\
\text { where } M & =M^{T}, K=K^{T}, G=-G^{T}
\end{aligned}
$$

can be solved using linearization

$$
(\lambda N-H) z=\left(\lambda\left[\begin{array}{ll}
I & G \\
0 & I
\end{array}\right]-\left[\begin{array}{cc}
0 & -K \\
M^{-1} & 0
\end{array}\right]\right)\left[\begin{array}{c}
y \\
x
\end{array}\right]=0 \quad(y:=\lambda M x)
$$

\rightsquigarrow skew-Hamiltonian/Hamiltonian eigenproblem, i.e., N is skew-Hamiltonian $\left((N J)^{T}=-(N J)^{T}\right), H$ is Hamiltonian;

Skew-Hamiltonian/Hamiltonian eigenproblem is equivalent to Hamiltonian eigenproblem $\mathrm{Hz}=\lambda z$ with

$$
H=\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & -K \\
M^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]
$$

Quadratic Eigenvalue Problems

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introductior

Symplectic Lanczos

The SR

Algorithm
HKS
Numerical
Examples
Quadratic Eigenvalue Problems
Corner
singularities
Gyroscopic systems

For eigenvalues of largest magnitude apply HKS to

$$
H=\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & -K \\
M^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]
$$

For eigenvalues of smallest magnitude apply HKS to

$$
H^{-1}=\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & M \\
-K^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]
$$

Note: more efficient than SHIRA applied to H^{-2} !

Numerical Examples

Quadratic Eigenvalue Problems

For eigenvalues of largest magnitude apply HKS to

$$
H=\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & -K \\
M^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]
$$

For eigenvalues of smallest magnitude apply HKS to

$$
H^{-1}=\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & M \\
-K^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]
$$

For interior real/purely imaginary eigenvalues apply HKS to

$$
\begin{aligned}
H_{2}(\tau)= & H R_{2}(\tau)=H(H-\tau I)^{-1}(H+\tau I)^{-1} \\
= & {\left[\begin{array}{cc}
-\frac{1}{2} G & -K \\
I & 0
\end{array}\right]\left[\begin{array}{cc}
I & \tau I \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
-Q(\tau)^{-1} & 0
\end{array}\right]\left[\begin{array}{ll}
I & G \\
0 & I
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
0 & I \\
-Q(\tau)^{-T} & 0
\end{array}\right]\left[\begin{array}{cc}
I & -\tau I \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & M
\end{array}\right]
\end{aligned}
$$

Applying $Q(\tau)^{-1}, Q(\tau)^{-T}$ requires only 1 LU factorization! Note: as efficient as SHIRA applied to $R_{2}(\tau)$!

Numerical Examples

Quadratic Eigenvalue Problems

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR
Algorithm
HKS
Numerical
Examples
Quadratic Eigenvalue Problems
Corner
singularities
Gyroscopic systems

Conclusions and Outlook

For eigenvalues of largest magnitude apply HKS to

$$
H=\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & -K \\
M^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & -\frac{1}{2} G \\
0 & I
\end{array}\right]
$$

For eigenvalues of smallest magnitude apply HKS to

$$
H^{-1}=\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
0 & M \\
-K^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
I & \frac{1}{2} G \\
0 & I
\end{array}\right]
$$

For interior complex eigenvalues apply HKS to

$$
\begin{aligned}
H_{4}(\tau) & =H R_{4}(\tau) \\
& =H(H-\tau I)^{-1}(H+\tau I)^{-1}(H-\bar{\tau} I)^{-1}(H+\bar{\tau} I)^{-1} .
\end{aligned}
$$

Note: as efficient as SHIRA applied to $R_{4}(\tau)$!

Numerical Examples

Numerical tests

- We apply eigs and HKS (and SHIRA for nonzero shifts) to several test sets.
- Convergence is based on comparable stopping criteria: Ritz values are taken as converged if relative residuals for the shift-and-invert operators are smaller than given tolerance.
- Relative residuals in numerical examples are the residuals for the QEP, i.e.,

$$
\frac{\left\|\left(\tilde{\lambda}^{2} M+\tilde{\lambda} G+K\right) \tilde{x}\right\|_{1}}{\left\|\tilde{\lambda}^{2} M+\tilde{\lambda} G+K\right\|_{1}\|\tilde{x}\|_{1}}
$$

where $(\tilde{\lambda}, \tilde{x})$ is a converged Ritz pair.

Numerical Examples

Corner singularities

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR

Algorithm
HKS
Numerical
Examples
Quadratic
Eigenvalue
Problems
Corner singularities

- Here: 3D elasticity problem for Fichera corner (cutting the cube $[0,1] \times[0,1] \times[0,1]$ out of the cube $(-1,1) \times(-1,1) \times(-1,1))$.
■ $n=12,828$, matrix assembly with software CoCoS [C. Pester '05].
- Want 12 eigenvalues closest to target shift $\tau=1$.

■ Compare SHIRA applied to $R_{2}(1)$, eigs and HKS applied to $H_{2}(1)$.

- SHIRA needs 3, eigs 6, HKS 4 iterations.

■ Max. condition number in SR iterations: $\max (\operatorname{cond}(S R))=3.35 \cdot 10^{5}$.

Numerical Examples

Corner singularities

Large-Scale Hamiltonian Eigenproblems

Peter Benner

- Here: 3D elasticity problem for Fichera corner (cutting the cube $[0,1] \times[0,1] \times[0,1]$ out of the cube $(-1,1) \times(-1,1) \times(-1,1))$.
■ $n=12,828$, matrix assembly with software CoCoS [C. Pester '05].
- Want 12 eigenvalues closest to target shift $\tau=1$.

■ Compare SHIRA applied to $R_{2}(1)$, eigs and HKS applied to $H_{2}(1)$.

- SHIRA needs 3, eigs 6, HKS 4 iterations.

■ Max. condition number in SR iterations: $\max (\operatorname{cond}(S R))=3.35 \cdot 10^{5}$.

SHIRA		HKS	
Eigenvalue	Residual	Eigenvalue	Residual
0.90510929898162	$2 \cdot 10^{-14}$	0.90510929894951	$6 \cdot 10^{-16}$
0.90529568786502	$2 \cdot 10^{-14}$	0.90529568784944	$5 \cdot 10^{-16}$
1.07480595544983	$5 \cdot 10^{-15}$	1.07480595544985	$4 \cdot 10^{-16}$
1.60117345104537	$1 \cdot 10^{-13}$	1.60117345101134	$6 \cdot 10^{-16}$
1.65765608689959	$4 \cdot 10^{-14}$	1.65765608679830	$3 \cdot 10^{-15}$
1.65914529725492	$1 \cdot 10^{-14}$	1.65914529702482	$7 \cdot 10^{-15}$

Numerical Examples

Corner singularities

Large-Scale Hamiltonian Eigenproblems

Peter Benner

- Here: 3D elasticity problem for Fichera corner (cutting the cube $[0,1] \times[0,1] \times[0,1]$ out of the cube $(-1,1) \times(-1,1) \times(-1,1))$.
■ $n=12,828$, matrix assembly with software CoCoS [C. Pester '05].
- Want 12 eigenvalues closest to target shift $\tau=1$.

■ Compare SHIRA applied to $R_{2}(1)$, eigs and HKS applied to $H_{2}(1)$.

- SHIRA needs 3, eigs 6, HKS 4 iterations.

■ Max. condition number in SR iterations: $\max (\operatorname{cond}(S R))=3.35 \cdot 10^{5}$.

eigs		HKS	
Eigenvalue	Residual	Eigenvalue	Residual
0.90510929898127	$4 \cdot 10^{-16}$	0.90510929894951	$6 \cdot 10^{-16}$
0.90529568786417	$4 \cdot 10^{-16}$	0.90529568784944	$5 \cdot 10^{-16}$
1.07480595545002	$4 \cdot 10^{-16}$	1.07480595544985	$4 \cdot 10^{-16}$
1.60117345102312	$2 \cdot 10^{-16}$	1.60117345101134	$6 \cdot 10^{-16}$
1.65765608688689	$2 \cdot 10^{-16}$	1.65765608679830	$3 \cdot 10^{-15}$
1.65914529726339	$1 \cdot 10^{-16}$	1.65914529702482	$7 \cdot 10^{-15}$

Gyroscopic systems: rolling tire

- Modeling the noise of rolling tires requires to determine the transient vibrations, [Nackenhorst/von Estorff '01].
- FEM model of a deformable wheel rolling on a rigid plane surface results in a gyroscopic system of order $n=124,992$
[NACKENHORST '04].
- Sparse LU factorization of $Q(\tau)$ requires about 6 GByte.
- Here, use reduced-order model of size $n=2,635$ computed by AMLS
[Elssel/Voss '06].

Numerical Examples

Gyroscopic systems: rolling tire

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR Algorithm HKS

Numerical Examples Quadratic Eigenvalue Problems Corner

Gyroscopic systems

■ Compare eigs and HKS applied to H^{-1} to compute the 12 smallest eigenvalues.
■ eigs needs 8 , HKS 6 iterations.

- $\max (\operatorname{cond}(S R))=331$.

■ Eigenvalues scaled by 1,000.

eigs		HKS	
Eigenvalue	Residual	Eigenvalue	Residual
$4 \cdot 10^{-12}+1.73705142673 \imath$	$2 \cdot 10^{-14}$	$1.73705142671 \imath$	$5 \cdot 10^{-17}$
$-3 \cdot 10^{-12}+1.66795405953 \imath$	$8 \cdot 10^{-15}$	$1.66795405955 \imath$	$2 \cdot 10^{-15}$
$2 \cdot 10^{-13}+1.66552788164 \imath$	$2 \cdot 10^{-15}$	$1.66552788164 \imath$	$1 \cdot 10^{-16}$
$4 \cdot 10^{-14}+1.58209209804 \imath$	$1 \cdot 10^{-16}$	$1.58209209804 \imath$	$5 \cdot 10^{-17}$
$-1 \cdot 10^{-14}+1.13657108578 \imath$	$8 \cdot 10^{-17}$	$1.13657108578 \imath$	$7 \cdot 10^{-18}$
$1 \cdot 10^{-14}+0.80560062107 \imath$	$1 \cdot 10^{-16}$	$0.80560062107 \imath$	$6 \cdot 10^{-18}$

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR
Algorithm
HKS
Numerical
Examples
Quadratic
Eigenvalue
Probtems
Corner
singularities
Gyroscopic systems

- Compare eigs and HKS applied to H^{-1} to compute the 180 smallest eigenvalues.

Conclusions and Outlook

Conclusions

- Solution of large-scale eigenproblems with Hamiltonian eigensymmetry in a numerically reliable way possible by combination of symplectic Lanczos process and Krylov-Schur restarting.
- Alternative to SHIRA, often with faster convergence.
- Relies on parameterized SR algorithm [FAssbender '07].
- Advantageous in particular in presence of eigenvalues on the imaginary axis, e.g., for stable gyroscopic systems.

Conclusions and Outlook

Outlook

- Integration into HAPACK (\equiv better and more reliable implementation. . .)
- Comparison to SOAR [BAI/Su '05] for second-order eigenproblems.
■ Solution of higher-order, structured polynomial eigenproblems.
- Rational Krylov methods for Hamiltonian eigenproblems; RatSHIRA developed by C. Effenberger (diploma thesis, TU Chemnitz 2008).
- Version for symplectic/palindromic eigenproblems based on symplectic Lanczos process and SZ iteration.
■ Two-sided symplectic (implicitly restarted) Arnoldi based on symplectic URV decomposition [B./Kressner/Mehrmann/Xu], soon.

References

Large-Scale Hamiltonian Eigenproblems

1 T. Apel, V. Mehrmann, and D. Watkins.
Structured eigenvalue methods for the computation of corner singularities in 3d anisotropic elastic structures. Comput. Methods Appl. Mech. Engrg., 191:4459-4473, 2002.

2 P. Benner.
Structured Krylov subspace methods for eigenproblems with spectral symmetries.
Workshop Theoretical and Computational Aspects of Matrix Algorithms, Dagstuhl, October 2003.
3 P. Benner and H. Faßbender.
An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem.
Lin. Alg. Appl., 263:75-111, 1997.
4 P. Benner and H. Faßbender.
An implicitly restarted symplectic Lanczos method for the symplectic eigenvalue problem. SIAM J. Matrix Anal. Appl., 22(3):682-713, 2000.

5 P. Benner, H. Faßbender, and M. Stoll.
A Krylov-Schur-type algorithm for Hamiltonian eigenproblems based on the symplectic Lanczos process.
Submitted, 2007.
6 P. Benner, H. Faßbender, and M. Stoll.
Solving large-scale quadratic eigenvalue problems with Hamiltonian eigenstructure using a structure-preserving Krylov subspace method.
Numerical Analysis Group Research Report NA-07/03, Oxford University, February 2007.
7 A. Bunse-Gerstner and V. Mehrmann.
A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation.
IEEE Trans. Automat. Control, AC-31:1104-1113, 1986.
8 H. Faßbender.
The Parameterized SR Algorithm for Hamiltonian Matrices. ETNA, 26:121-145, 2007.

References

Large-Scale Hamiltonian Eigenproblems

Peter Benner

Introduction
Symplectic Lanczos

The SR
Algorithm
HKS
Numerical
Examples
Conclusions and Outlook

References

9 H. Faßbender.
A detailed derivation of the parameterized $S R$ algorithm and the symplectic Lanczos method for Hamiltonian matrices. Technical report, TU Braunschweig, Institut Computational Mathematics, 2006.

10 W. R. Ferng, W. W. Lin, and C. S. Wang.
The shift-inverted J-Lanczos algorithm for the numerical solutions of large sparse algebraic Riccati equations.
Comp. Math. Appl., 33(10):23?40, 1997.
11 M. Stoll.
Locking und Purging für den Hamiltonischen Lanczos-Prozess.
Diplomarbeit, Fakultät für Mathematik, TU Chemnitz, September 2005.
12 R.B. Lehoucq and D.C. Sorensen.
Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Appl., 17:789-821, 1996.

13 V. Mehrmann and D. Watkins.
Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comp., 22:1905-1925, 2001.

14 D. Sorensen.
Numerical methods for large eigenvalue problems. Acta Numerica, 11:519-584, 2002.

15 G.W. Stewart.
A Krylov-Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl., 23(4):601-614, 2001.

16 D. Watkins.
On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl., 385:23-45, 2004.

