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Outline

The problem: approximating g(A)b for large sparse A ∈ Rd×d, b ∈ Rd,
and, e.g., g(z) = exp(τz), g(z) =

√
z, g(z) = log(z)

The method: (rational) Arnoldi

The aim: ”simple” a priori error estimates in terms of

field of values W (A) = {y∗Ay : ‖y‖ = 1}

The question: link with best polynomial/rational approx. of g on W (A)?

The aim: Simple sharp explicit upper bounds
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The problem and some applications

How to approximately compute g(A)b, where

‖b‖ = 1, A ∈ Rd×d large, sparse, non-symmetric...?

Applications for g(z) = ez, g(z) = cos(z), g(z) = sin(z): semi-discretized

PDEs or ODEs.

Applications for g(z) = 1/
√
z: splitting techniques in implicit schemes,

stochastic differential equations.

Applications for g(z) = log(z), g(z) = tanh(z), ...

...recent SIAM book of Nick Higham.
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Approximating via the Arnoldi method
We compute ONB Vm = (v1, ..., vm) ∈ Cd×m of span(b, Ab, ..., Am−1b) via

v1 = b, hj+1,jvj+1 = Avj − h1,jv1 − ...− hj,jvj ,

leading to Arnoldi decomposition

AVm = VmHm + (0, ...., 0, hm+1,mvm+1), Hm = V ∗
mAVm upper Hessenberg.

Approximation via Arnoldi:

• compute Arnoldi decomposition Vm, Hm for ”small” m

• compute exactly g(Hm)

• approach g(A)b by Vmg(Hm)e1.

Error estimate? For each polynomial p of degree < m we have

p(A)b = p(A)Vme1 = Vmp(Hm)e1, and thus

‖g(A)b− Vmg(Hm)e1‖ = ‖(g − p)(A)b− Vm(g − p)(Hm)e1‖

≤ ‖(g − p)(A)‖+ ‖(g − p)(Hm)‖.
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Approximating via rational Arnoldi

Consider some fixed denominator polynomial q(z) = (1− z/z1)...(1− z/zm).

Rough idea (following Ruhe):

we compute ONB Vm+1 = (v1, ..., vm+1) of

q(A)−1span(b, Ab, ..., Amb) = span(b, (z1I −A)−1b, ..., (zmI −A)−1b)

and then project:

Am+1 = V ∗
m+1AVm+1.

The rational Arnoldi approximation with fixed denominator q of g(A)b

Vm+1g(Am+1)V
∗
m+1b = Vm+1g(Am+1)e1

gives the exact answer for any rational function g = p/q with deg p ≤ m.

Also, we recover ordinary Arnoldi with Am+1 = Hm+1 for

z1 = ... = zm = ∞.
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Rational Arnoldi: some more details

For fixed denominator polynomial q(z) = (1− z/z1)...(1− z/zm), take z0 far

from the other zj, and put zm+1 = ∞.

We compute ONB Vm+1 = (v1, ..., vm+1) of q(A)−1span(b, Ab, ..., Amb) via

v1 = b, hj+1,jvj+1 = (zjI −A)−1(zj − z0)(A− z0I)vj − h1,jv1 − ...− hj,jvj ,

leading to a more complicated Arnoldi decomposition: with

Dm+1 = diag ( 1
z1−z0

, ..., 1
zm+1−z0

), and Hm+1 = (hj,k)j,k=1,...,m+1 upper

Hessenberg, we get after some computations

(A− z0I)Vm+1(I +Hm+1Dm+1) = Vm+1Hm+1 + (0, ...., 0, hm+2,m+1vm+2),

implying that Am+1 := V ∗
m+1AVm+1 = z0I +Hm+1(I +Hm+1Dm+1)−1.

Structured matrices are helpful for solving shifted systems.

If no structure, take repeated poles (=⇒ few LU decompositions)
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How to get error estimates?

In both cases the error is governed by ‖g(A)− p(A)‖ or ‖g(A)− p
q
(A)‖ for

arbitrary polynomials p of degree ≤ m.

Link with

ηqm(g,E) = min
deg p≤m

‖g −
p

q
‖L∞(E) ???

For normal matrices: take the maximum on the (convex hull of) the

spectrum, but in the general case?

Crouzeix 2006: There exists a universal constant C ∈ [2, 11.5] such that

for any matrix B ∈ Cd×d and for any function f analytic in the field of

values

W (B) = {y∗By : y ∈ Cd, ‖y‖ = 1},

there holds

‖f(B)‖ ≤ C ‖f‖L∞(W (B)).

In what follows let E ⊂ C be some convex and compact set symmetric with

respect to the real axis and containing the field of values.
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Riemann maps and Faber operators

Let E convex, compact as before, D closed unit disc, then there exists

unique conformal map φ : Ec 7→ Dc with φ(∞) = ∞, φ′(∞) > 0, ψ := φ−1.

Faber operator: bijection between G analytic in D and g analytic in E

z ∈ Int(E) : g(z) = F(G)(z) =
1

2πi

∫
|w|=1

ψ′(w)

ψ(w)− z
G(w) dw,

w ∈ Int(D) : G(w) = F−1(g)(w) =
1

2πi

∫
|ζ|=1

g(ψ(ζ))

ζ − w
dζ.

Faber polynomial: Fn(z) = F(wn)(z) polynomial of degree n,

namely Fn polynomial part of φn.

G(w) = a
w−w1

with |w1| > 1, F(G)(z) = aψ′(w1)

z−ψ(w1)
, similar for multiple poles.

Hence with Q(w) =
∏
j(w − wj), q(z) =

∏
j(z − zj), zj = ψ(wj) (Ellacott ’83):

g = F(G) =⇒
1

‖F−1‖
ηQm(G,D) ≤ ηqm(g,E) ≤ 2 ηQm(G,D).
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Our a priori bound

THEOREM 1: Let E as before containing the field of values W (A)

and let g = F(G) be analytic on E, then for the rational q-Arnoldi

method

‖g(A)b− Vm+1g(Am+1)e1‖ ≤ 4 ηQm(G,D)

(put q = Q = 1 for classical Arnoldi).

Our proof is inspired from Crouzeix, Delyon, Badea, BB 02-07, in

particular the CRAS ’05 of BB: ‖Fn(A)‖ ≤ 2.

Also, we use W (Am+1) ⊂W (A).

Previous work of Eiermann (1993), Greenbaum (1997), ...
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Idea of proof of Theorem 1

It is sufficient to show

‖h(A)‖ ≤ 2‖H‖L∞(D), h = F(H) +H(0).

Here W (A) ⊂ Int(E) for simplicity. We have

F(wm)(A) =
1

2πi

∫
|w|=1

wmψ′(w)(ψ(w)−A)−1dw =

 Fm(A) if m = 0, 1, 2, ...,

0 if m = −1,−2, ....

Hence

h(A) =
1

2π

∫
|w|=1

H(w)

(
wψ′(w)(ψ(w)−A)−1

)
+

(
wψ′(w)(ψ(w)−A)−1

)∗
︸ ︷︷ ︸

positive definite

 dw

iw
.
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Arnoldi =⇒ best polynomial approximation on D
The Faber coefficients are given by

gj =
1

2πi

∫
|w|=1

g(ψ(w))

wj+1
dw =⇒ g = F(G), G(w) =

∞∑
j=0

gjw
j ,

In the polynomial case q = Q = 1, we have

LEMMA 2:

|gm| ≤ η1
m−1(G,D) ≤

∞∑
j=0

|gm+j |.

Knizhnerman ’91 gave a similar upper bound with additional powers of m+ j

Hochbruck & Lubich ’97 gave a more complicated bound, weaker up to factor 0.75.

Example: g(z) = exp(τz), τ > 0: if m ≥ τcap(E) then both |gm| and ηm(G,D) can be

bounded above and below by constants times (τcap(E))m/(m!) (as in the disk

case).

In general, if G is analytic in |w| ≤ R then |gm| ≤ R−m ‖G‖L∞({|w|≤R}).
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Rational Arnoldi =⇒ best rational

approximation on D with prescribed poles

Rational approximation (with fixed denominator) allows for a better rate

of convergence for functions analytic in parts of the plane like

1
√
z

=

∫ 0

−∞

1

z − t

dx

π
√
|x|
,

log(z)

z − 1
=

∫ 0

−∞

1

z − x

dx

1 + |x|
,

zκ =
sin(π|κ|)

π

∫ 0

−∞

|x|κ

z − x
dx, κ ∈ (−1, 0),

or more generally MARKOV FUNCTIONS

g(z) =

∫ β

α

dµ(x)

z − x
, α < β < γ = min{Re(z) : z ∈ E}, µ ≥ 0.

Notice: G = F−1g is also Markov function with support

[φ(α), φ(β)] ⊂ [−∞,−1).
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The special case of Markov functions

Suppose in what follows that wj occur in conjugate pairs, and

wj = φ(zj) ∈ (φ(α), φ(β)) have even multiplicities. Thus B(w) :=
∏m
j=1

1−wwj

w−wj

is of unique sign and of modulus ≥ 1 in [φ(α), φ(β)].

THEOREM 3: Under the above assumptions for E, wj, g∫
φ′(x)

|φ(x)|2 − 1/|B(φ(x))|
dµ(x)

|B(φ(x))|
≤ ηQm(G,D)

≤
∫

φ′(x)

|φ(x)|2 − 1

dµ(x)

|B(φ(x))|
≤ ‖g‖L∞(E) max

y∈[φ(α),φ(β)]

1

|yB(y)|
.

NB1: lower/upper bound differ by constant 1− |φ(β)|−2.

NB2: upper bound remains valid without assumptions on multiplicities.

Ideas of proof: for upper bound construct modified interpolant at 1/wj and 0. For

lower bound compute explicitly best rational approximant on discrete subset of ∂D.
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How to choose the poles?

We have so far for Markov functions g

‖g(A)b−Vm+1g(Am+1)e1‖ ≤
4‖g‖L∞(E)

|φ(β)|
max

w∈[φ(α),φ(β)]

1

|B(w)|
, B(w) :=

m∏
j=1

1− wwj

w − wj
.

Choice of poles zj = ψ(wj) by minimizing 1/B on [φ(α), φ(β)]?

• one pole of multiplicity m.

• two poles of multiplicity m/2.

• k poles of multiplicity p, m = pk.
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How to choose a single pole?

Let m be even. The problem

min
w1∈C

max
[φ(α),φ(β)]

|
1− w1w

w − w1
|

can be solved explicitly with optimal pole

w1 = wopt =
φ̃(β)φ̃(α) + 1

φ̃(β)φ̃(α)− 1
, φ̃(w) =

√
|φ(w)| − 1

|φ(w)|+ 1
∈ (0, 1),

leading to the convergence rate

max
w∈[φ(α),φ(β)]

|
1− w1w

w − w1
|m =

(1− φ̃(β)/φ̃(α)

1 + φ̃(β)/φ̃(α)

)m
.

Example: if [α, β] = [−∞, 0],E = [λmin, λmax] then rate ≈ e−2m/ 4√κ, κ = λmax
λmin

.
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How to choose one finite pole?

We obtain exactly the same rate for a single pole as if we take the two

poles w1 = φ(α) and w2 = φ(β) with multiplicities m/2!

Special case α = ∞ = w1: see

Druskin & Knizhnerman ’98 for

symmetric A and Knizhnerman

& Simoncini ’08 for general A.

But we get a better rate cm for

w1 = ∞ if we put the finite pole

at w2 = − c2+1
2c

, where c unique

solution in (0, 1/|φ(β)|) of

−

√
2c2

1 + c4
=

1/φ(β) + c

1 + c/φ(β)
.

−1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/φ(β)
−1 −0.998 −0.996 −0.994 −0.992

0.75

0.8

0.85

0.9

0.95

1

1/φ(β)
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How to choose real poles?

Let m = pk for some integers p, k ≥ 1.

This pole placement problem is reduced to the (classical) third Zolotarev problem

for minimal Blaschke products on intervals I ⊂ R \ D:

find Zk,I the minimum L∞(I) norm of a Blaschke product of order k,

the required poles w1, ..., wk (repeated periodically) being the zeros of such a

minimal Blaschke product Bk,I .

It is known that R(I,D)−k ≤ Zk,I ≤ 2R(I,D)−k, and that for j = 1, 2, ...., k

wj = χI,D

(
exp(2πi

2j − 1

4k
)
)

where R(I,D) is the ring modulus and χI,D the conformal map from 1 < |ζ| < R

onto the doubly connected set C \ (D ∪ I)....
Convergence rate for k LU decompositions:

max
w∈[φ(α),φ(β)]

1/|B(w)| ≤ 2pR([φ(α), φ(β)],D)−m.
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... some final comments ...

... and what to do with

log(z) = (z − 1)

∫ 0

−∞

1

z − t

dt

1− t
,

z7/2 = z4z−1/2 = z4

∫ 0

−∞

1

z − t

dt

π
√
|t|
,

... we can go back to the proof of THM 1: if g̃(z) = p1(z) + p2(z)g(z) with

deg p2 = s, deg p1 ≤ m+ s and G = F(g) then with zm+1 = ... = zm+s+1 = ∞

‖g̃(A)b− Vm+s+1g̃(Am+s+1)e1‖ ≤ 4 ‖p2(A)b‖ ηQm(G,D).
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