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Outline

The problem: approximating g(A)b for large sparse A € R¥*? b ¢ RY,

and, e.d., g(z) = exp(72), g9(2) = /2, g(z) = log(z)
The method: (rational) Arnoldi
The aim: "simple” a priori error estimates in terms of

field of values W(A) = {y*Ay : ||y = 1}
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The problem: approximating g(A)b for large sparse A € R¥*? b ¢ RY,

and, e.d., g(z) = exp(72), g9(2) = /2, g(z) = log(z)
The method: (rational) Arnoldi
The aim: "simple” a priori error estimates in terms of

field of values W(A) = {y*Ay : ||ly|| = 1}

The question: link with best polynomial/rational approx. of g on W (A)~?
The aim: Simple sharp explicit upper bounds
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T he problem and some applications

How to approximately compute g(A)b, where
6] =1, A € R4 large, sparse, non-symmetric...?

Applications for g(z) = e*, g(z) = cos(z), g(z) = sin(z): semi-discretized
PDEs or ODEs.

Applications for g(z) = 1/4/z: splitting techniques in implicit schemes,
stochastic differential equations.

Applications for g(z) = log(z), g(z) = tanh(z), ...

...recent SIAM book of Nick Higham.
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Approximating via the Arnoldi method
We compute ONB V,,, = (v1,...,v,,) € C¥X™ of span(b, Ab, ..., A~ 1b) via
vy = b, hjt1,Vj41 = Avj — hy jv1 — ... — h; jv;,
leading to Arnoldi decomposition

AV, =V Hyy + (0, ...,0, hip 1, mYm+1), Hm =V AV, upper Hessenberg.

Approximation via Arnoldi:
e compute Arnoldi decomposition V,,,, H,, for "small’” m

e compute exactly g(H,,)

e approach g(A)b by V,g(H,,)e.

Error estimate? For each polynomial p of degree < m we have
p(A)b =p(A)Vmer = Vi,p(Hp,)er, and thus

(g —p)(A)b — Vin(g — p)(Hm)ei|
(g — ) (Al + lI(g — p)(Hm)]|-

19(A)b = Ving(Hm)ea|

VAN
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Approximating via rational Arnoldi
Consider some fixed denominator polynomial q(z) = (1 — z/2z1)...(1 — 2/zm).
Rough idea (following Ruhe):

we compute ONB V11 = (v1, ..., Um41) OF
q(A)"'span(b, Ab, ..., A™b) = span(b, (z1] — A)"'b, ..., (2] — A)71D)

and then project:

*

The rational Arnoldi approximation with fixed denominator ¢ of g(A)b

Vm+19(Am+l)Vn>;+1b = Vint19(Amy1)er

gives the exact answer for any rational function g = p/q with degp < m.
Also, we recover ordinary Arnoldi with A,,.1 = H,,+, for

21 = ... = 2y = OO.
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Rational Arnoldi: some more details

For fixed denominator polynomial g(z) = (1 — z/z1)...(1 — z/z,), take zy far
from the other z;, and put z,,+1 = 0.

We compute ONB V41 = (v1, ..., vm+t1) Of q(A)~tspan(b, Ab,..., A™b) via
V1 = b, hj_|_17j’Uj_|_1 — (Zj[ — A)_l(Zj — ZO)(A — ZOI)’Uj — hl,j’Ul — ee. hj)j’l)j,

leading to a more complicated Arnoldi decomposition: with
Dypy1 = diag (= L), and Hyi1 = (hjk)jk=1....m+1 UPPEr

21 —Z%0 ! ! Zm+1—7F0

Hessenberg, we get after some computations

(A — Zol)vm+1(l -+ Hm+1Dm+1) — Vm+1Hm+1 + (07 ceeey 07 hm+2,m+1vm+2)7

|mply|ng that Am_|_1 = V£+1Avm+1 = zol + Hm_|_1(I -+ Hm_|_1Dm_|_1)_1.

Structured matrices are helpful for solving shifted systems.
If no structure, take repeated poles (— few LU decompositions)
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How to get error estimates?

In both cases the error is governed by |[g(A) — p(A)|| or ||[g(A) — %(A)H for
arbitrary polynomials p of degree < m.

Link with

: p
1 (g,]£) = min — = 777
N (9, E) dogpem lg . ”LOO(E)

For normal matrices: take the maximum on the (convex hull of) the
spectrum, but in the general case?
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How to get error estimates?

In both cases the error is governed by ||g(A) — p(A)|| or [[g(A) — g(A)H for
arbitrary polynomials p of degree < m.

Link with

- p
K — — = 2?7
nm(g,JE) de{;l};)lgmllg qHLoo(E) o

For normal matrices: take the maximum on the (convex hull of) the
spectrum, but in the general case?

Crouzeix 2006: There exists a universal constant C € [2,11.5] such that
for any matrix B € C**? and for any function f analytic in the field of
values

W(B) = {y*By : y € C*, |jy|| = 1},
there holds
| fF(Bl < Clflloe. w)-
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How to get error estimates?

In both cases the error is governed by |[[g(A) — p(A)|| or |[g(A) — %(A)H for
arbitrary polynomials p of degree < m.

Link with

. p
1(9,E) = m — = 777
(9, B) = min g =l

For normal matrices: take the maximum on the (convex hull of) the
spectrum, but in the general case?

Crouzeix 2006: There exists a universal constant C € [2,11.5] such that
for any matrix B € C**? and for any function f analytic in the field of
values

W(B) ={y*By:y € C% |y| =1},
there holds

(B < Cllflleewmy)-
In what follows let E C C be some convex and compact set symmetric with
respect to the real axis and containing the field of values.
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Riemann maps and Faber operators

Let £ convex, compact as before, D closed unit disc, then there exists
unique conformal map ¢ : E¢ — D¢ with ¢(co0) = 0o, ¢'(c0) > 0, 9 := ¢ 1.

Faber operator: bijection between G analytic in D and g analytic in E

z € Int(E) : 9(z) = F(G)(z) = 1 V(w) G(w) dw,

278 Jjw)=1 Y(w) — 2

w € Int(D) : G(w) = F~L(g)(w) = QLM . C(w(i)))

Faber polynomial: F,(z) = F(w")(z) polynomial of degree n,
namely F, polynomial part of ¢".

G(w) = ;=25 with |wi| > 1, F(G)(2) = % similar for multiple poles.
Hence with Q(w) = [[;(w — wj), q(2) =[];(z — 25), z; = ¢¥(w;) (Ellacott '83):

1
|7~

g=F(G) = n%(G,D) < n(g9,E) < 2n%(G,D).

Bernhard Beckermann, Univ. Lille 1 back Cortona 2008 , page 8



Our a priori bound

THEOREM 1: Let E as before containing the field of values W (A)

and let g = F(G) be analytic on E, then for the rational ¢-Arnoldi
method

19(A)b — Vint1g(Amir)er| < 4072(G, D)
(put ¢ = Q = 1 for classical Arnoldi).

Our proof is inspired from Crouzeix, Delyon, Badea, BB 02-07, in
particular the CRAS '05 of BB: ||F,(A)| < 2.

Also, we use W (A,,+1) C W(A).

Previous work of Eiermann (1993), Greenbaum (1997), ...
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Idea of proof of Theorem 1

It is sufficient to show
|h(A)|] < 2||H||L m), h=F(H)+ H(0).

Here W(A) C Int(E) for simplicity. We have

1

Fm™(A) = — [ w™ (w)((w)—A) " dw = { Fon(4) 1Tm =0,1,2,...

2704 Jjw|=1 0 ifm=—1,-2,....

Hence

[ |

hA) = g [ H) | (o9 @ @) = A7) + (ww)ew) - 47) | 2

Tw

\ positivevdefinite )
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Arnoldi —> best polynomial approximation on D

The Faber coefficients are given by

gj = L g (w)) dw = g=F(G), Gw)= igjwj,

271 lw|=1 witl

In the polynomial case ¢ = @) = 1, we have
LEMMA 2:

gm| < 11 (G, D) <Y g
j=0

Knizhnerman '91 gave a similar upper bound with additional powers of m + 3
Hochbruck & Lubich '97 gave a more complicated bound, weaker up to factor 0.75.

Example: g(z) =exp(rz), 7 > 0: if m > rcap(E) then both |g,,| and n,,(G,D) can be
bounded above and below by constants times (rcap(E))™/(m!) (as in the disk

case).

In general, if G is analytic in |w| < R then [gnm| < R™™||G|| Lo (f|w|<R})-
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Rational Arnoldi —> best rational

approximation on D with prescribed poles

Rational approximation (with fixed denominator) allows for a better rate

of convergence for functions analytic in parts of the plane like

1 _/0 1 dx 1og(z)_/0 1 dx
VZ Jwz—tm/lz]] z—-1 S oz—zl+|z|

. 0 K

or more generally MARKOV FUNCTIONS

S me:
g(z):/ d ), a < B <~v=min{Re(z): z € E}, u > 0.

<z — X

Notice: G = F !¢ is also Markov function with support

[p(a), #(B)] C [—o0, —1).
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T he special case of Markov functions

Suppose in what follows that w; occur in conjugate pairs, and
w; = ¢(25) € (¢(a), ¢(B)) have even multiplicities. Thus B(w) := [[;_, 110__"“;“?
is of unique sign and of modulus > 1 in [¢p(«a), (0)].

THEOREM 3: Under the above assumptions for E, w;, g

(z) du(x) .
| G ajswwmeen < HED
¢'(x) du(x) |
/M) 1 Be@) = e® e vBwl

NB1: lower/upper bound differ by constant 1 — |¢(8)| 2.

NB2: upper bound remains valid without assumptions on multiplicities.

Ideas of proof: for upper bound construct modified interpolant at 1/w,; and 0. For
lower bound compute explicitly best rational approximant on discrete subset of 90D.
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How to choose the poles?

We have so far for Markov functions g

49l &) 1 u

1 —wwj
ol W — W; '
Choice of poles z; = ¢(w;) by minimizing 1/B on [¢(«), p(6)]?

e one pole of multiplicity m.
e two poles of multiplicity m/2.

e Lk poles of multiplicity p, m = pk.
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How to choose a single pole?

Let m be even. The problem

1 — ww

min max
w1€C [¢(a),¢(B)] W — wq

can be solved explicitly with optimal pole

dB$@+1 5 v [lew) -1
3(B)¢(er) — 1 p(w)] +1

leading to the convergence rate

LT, (1= 5(/3)/5(@))"{

€ (0,1),

W1 = Wopt —

max | = = =
weldlo) (8] W — wy 1+ 3(8)/d(c)
Example: if [a, 8] = [—00,0],E = [Amin, Amax] then rate ~ e 27/ V5 ;o = Amax

>\min
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How to choose one finite pole?

We obtain exactly the same rate for a single pole as if we take the two
poles w; = ¢(a) and wy = ¢(B) with multiplicities m /2!

Special case a = co = wy: see 1 ———————— e
Druskin & Knizhnerman '98 for os | R
symmetric A and Knizhnerman 0_8;\\ 1 sl
& Simoncini '08 for general A. |\ |
But we get a better rate ¢ for |\ _ 0.9_\_\ R
wy = oo if we put the finite pole |
at wy, = —tL, where ¢ unique | . |
solution in (0,1/|¢(3)|) of | B
0.3t SN - S
2c? - 1/¢(6) +c 0.2} \\\ 1 0.8} \A\‘\.\, ]
T+ct 1+¢/6(8) o T\
1e(B) 1/g(B)
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How to choose real poles?

Let m = pk for some integers p, k > 1.

This pole placement problem is reduced to the (classical) third Zolotarev problem
for minimal Blaschke products on intervals I C R\ D:

find Z; 1 the minimum L. (I) norm of a Blaschke product of order k,

the required poles wq,...,w, (repeated periodically) being the zeros of such a
minimal Blaschke product By ;.

It is known that R(I,D) % < Z, ; <2R(I,D)"%, and that for j =1,2,....,k

27 —1
w, = exp(2me )
J XI,D( P( Ak )

where R(I,DD) is the ring modulus and x;p the conformal map from 1 < [(| < R
onto the doubly connected set C'\ (DU I)....
Convergence rate for £k LU decompositions:

e ax 1/|B(w)] < 2 R([¢(a), (8), D).
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some final commments ...

. and what to do with

og(x) = (z-1) [

ez —t1—t’

0
1 dt
L7/2 242—1/2224/

—oo 2 —tmy/|t]

. we can go back to the proof of THM 1: if g(z) = p1(2) + p2(2)g(2) with
degps = s,degp; < m+s and G = F(g) then with z,,11 = ... = zi4s41 = X

19(A)b = Vinss+1§(Amtst1)en]l < 4 [lp2(A)b 2 (G, D).
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