
SMCSolver: Structured Markov Chains Solver

Dario A. Bini, Beatrice Meini
and Sergio Steffé

Dipartimento di Matematica
Università di Pisa

Pisa, Italy

Email: bini, meini, steffe @dm.unipi.it

November 29, 2006

Abstract

Extended documentation of the package SMCSolver (Structured
Markov Chains Solver) Version 1.2 .

1 Introduction

The package Structured Markov Chains Solver (SMCSolver) has the
purpose of solving the most important classes of Markov chains encountered in
queueing models.

This package implements the most advanced available algorithms for QBD,
M/G/1 and G/M/1 problems.

The algorithms have been implemented as a Fortran 95 library.
A user-friendly graphical interface which allows an easy use of the software

tool is provided. The interface is written in C and relies on the GTK graphic
libraries, and runs on a Linux Workstation.

The package has been developed as part of a joint research collaboration
with

Benny Van Houdt
Department of Mathematics and Computer Science
University of Antwerp
Antwerpen, Belgium

who wrote a Matlab ToolBox with similar functionalities.
The joint work (Version 1.1) [8] [9] has been presented at the workshop:

SMCTOOLS: Tools for solving Structured Markov Chains

1

organized within the:
VALUETOOLS 2006 Conference, held in Pisa, Italy - October 10, 2006.

The Fortran code includes some code previously released by Bini and Meini,
and available at http://www.netlib.org, plus new routines. The graphic interface
has been written from scratch for SMCSolver.

The Matlab Toolbox is available at:

http://www.win.ua.ac.be/˜ vanhoudt/

and SMCSolver is available at:

http://bezout.dm.unipi.it/SMCSolver/

2 The problems

We consider row stochastic matrices P which can be partitioned into blocks
Pi,j . The matrix P is semi-infinite, i.e., its blocks Pi,j have subscripts i, j ∈ N.
In this framework, the main computational problem is computing the invariant
probability vector, i.e., the infinite nonnegative row vector π such that πP = π,
and πe = 1. Here e is the vector with components equal to 1. Throughout the
paper we assume P irreducible.

Due to the block structure of P , it is convenient to partition the vector π
into subvectors πi, i ∈ N. According to the specific structure of P we may
classify the Markov chains into suitable classes. In this section we refer the
reader to the books [20, 21, 16, 4].

2.1 QBD Markov chains

QBD Markov chains are defined by the transition matrix

P =




B0 B1 0
B−1 A0 A1

A−1 A0 A1

A−1 A0
. . .

0
.




, (1)

where A−1, A0, A1 ∈ Rm×m and B−1 ∈ Rm×n, B0 ∈ Rn×n,, B1 ∈ Rn×m, are
nonnegative matrices such that [B0, B1] , [B−1, A0, A1] and [A−1, A0, A1] are
row stochastic. Assume that A = A−1 + A0 + A1 is irreducible. The drift
of a QBD Markov chain is defined by µ = αT(−A−1 + A1)e, where α is the
stationary probability vector of A. We recall that a QBD is positive recurrent
if µ < 0, null recurrent if µ = 0 and transient if µ > 0.

Define G, R and U the minimal nonnegative solutions of the matrix equations

G = A−1 + A0G + A1G
2,

R = A1 + RA0 + R2A−1,

U = A0 + A1(I − U)−1A−1.

(2)

2

One has G = (I−U)−1A−1, R = A1(I−U)−1, moreover, if the QBD is positive
recurrent, and if B1 = A1, it holds

πk = π0R
k, for k ≥ 0,

π0(B0 + B−1G) = π0,

π0(I −R)−1e = 1.

(3)

2.2 M/G/1-type Markov chains

M/G/1-type Markov chains are defined by the transition matrix

P =




B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0
.




, (4)

where Ai, for i ≥ −1 are nonnegative matrices in Rm×m, B0 is a nonnegative
matrix in Rn×n, B−1 is a nonnegative matrix in Rn×m, and Bi, for i ≥ 1 are
nonnegative matrices in Rm×n, such that [B0, B1, B2, . . .], [B−1, A0, A1, A2, . . .],
[A−1, A0, A1, A2, . . .], are row stochastic. Throughout we assume A =

∑+∞
i=−1 Ai

irreducible. The drift of an M/G/1-type Markov chain is defined by µ = αTa,
where α is the stationary probability vector of A and a =

∑+∞
i=−1 iAie. We

recall that a Markov chain is recurrent iff µ ≤ 0, positive recurrent iff µ < 0 and
b =

∑+∞
i=1 iBie < ∞, transient iff µ > 0, null recurrent iff either µ = 0 or µ < 0

and
∑+∞

i=−1 iBie = ∞.
Define G the minimal nonnegative solution of the matrix equation

G =
+∞∑

i=−1

AiG
i+1. (5)

In the applications, the infinite sequence of data Ai, i = −1, 0, 1, 2, . . ., is
truncated to the finite size K such that

∑K
i=−1 Ai is numerically stochastic. In

this way, the equation (5) turns into

G =
K∑

i=−1

AiG
i+1. (6)

If the Markov chain is positive recurrent, and B−1 = A−1 the following
recursive formula due to Ramaswami [22] holds

πk =

(
π0B

∗
k +

k−1∑

i=1

πiA
∗
k−i

)
(I −A∗0)

−1, for k ≥ 1, (7)

3

where

A∗k =
+∞∑

i=k

AiG
i−k, B∗

k =
+∞∑

i=k

BiG
i−k, for k ≥ 0, (8)

and π0 is such that

π0B
∗
0 = π0, π0b− µπ0e + π0(I −B)(I −A)#a = −µ, (9)

where B =
∑+∞

i=0 Bi and the operator (·)# denotes the group inverse. A fast
version of Ramaswami formula based on FFT is shown in [17]. It outperforms
the formula based on (7) and (8) only if a very large number of components πn

is required.

2.3 G/M/1-type Markov chains

G/M/1-type Markov chains are defined by the transition matrix

P =




B0 B1 0
B−1 A0 A1

B−2 A−1 A0 A1

B−3 A−2 A−1 A0
. . .

...
...

.




, (10)

where A−i, i ≥ −1 are nonnegative matrices in Rm×m, B0, is a nonnegative ma-
trix in Rn×n, B1, is a nonnegative matrix in Rm×n, and B−i, i ≥ 1 are nonnega-
tive matrices in Rn×m, and [B0, B1], [B−1 + A0 + A1], [B−k, A−k+1, . . . , A0, A1]
are row stochastic for all k ≥ 2.

If A =
∑+∞

i=−1 A−i is not stochastic, then the Markov chain is positive re-
current. If A is stochastic then the Markov chain is positive recurrent if δ < 0,
null recurrent if δ = 0, and transient if δ > 0, where δ = αTa, α is such that
αTA = αT, αTe = 1, and a =

∑+∞
i=−1 iA−ie.

Define R the minimal nonnegative solution of the matrix equation

R =
+∞∑

i=−1

Ri+1A−i. (11)

If the Markov chain is positive recurrent, and if B1 = A1 then

πk = π0R
k for k ≥ 1, (12)

where π0 is characterized by the system

π0 = π0

+∞∑

i=0

RiB−i, π0(I −R)−1e = 1. (13)

It is worth mentioning that, if the matrix A =
∑+∞

i=−1 A−i is irreducible
and stochastic, the connection between M/G/1 and G/M/1-type Markov chains

4

is extremely simple. Indeed, define D = diag(α), where α is the strictly
positive stationary probability vector of A and define Ãi = D−1AT

−iD, for
i = −1, 0, 1, Now, take any solution R of (11) and define G̃ = D−1RTD. It
is easy to verify that G̃ is a solution of

X =
+∞∑

i=−1

ÃiX
i+1. (14)

A consequence of this property is that, to determine R for a positive recur-
rent G/M/1-type Markov chain is equivalent to determining G for a transient
M/G/1-type Markov chain. Conversely, to determine R for a null recurrent
or transient G/M/1-type Markov chain is equivalent to determining G for a
recurrent M/G/1-type Markov chain.

2.4 The case of Non-skip-free processes

Markov chains which are non-skip-free to lower levels are defined by the gener-
alized block upper Hessenberg matrix

P =




B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

...
...

...
...

. . .

B−N+1 A−N+2 A−N+3 A−N+4
. . .

A−N A−N+1 A−N+2 A−N+3
. . .

A−N A−N+1 A−N+2
. . .

A−N A−N+1
. . .

A−N
. . .

0
. . .




. (15)

for m×m blocks Ai, i ≥ −N and Bi, i ≥ −N + 1, where N ≥ 1 is an integer.
Markov chains which are non-skip-free to upper levels can be similarly defined
in terms of generalized block lower Hessenberg matrix. The matrix P can be
reblocked into blocks Bi, i ≥ 0 and Ai, i ≥ −1 of size mN as

P =




B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

.




. (16)

Therefore, in principle, it can be solved like a standard M/G/1 Markov chain.
In this case, the solution G of the equation G =

∑+∞
i=−1AiGi+1 can be written

5

as
G = U−1L (17)

where

U =




I 0
−G1 I

...
.

−GN−1 . . . −G1 I


 ,

L =




GN GN−1 . . . G1

.
...

GN GN−1

0 GN


 ,

(18)

for suitable m×m matrices G1, . . . , GN . The matrix G can also be written as

G = C(g)N

where g = (GN , GN−1, . . . , G1) and the block companion matrix C associated
with the block row vector r = (R1, R2, . . . , RN) is defined as:

C(r) =




0 I 0 . . . 0

0 0 I
. . .

...
...

. 0
0 . . . 0 0 I

R1 R2 RN




. (19)

3 The algorithms

First we discuss some general techniques and then specific algorithms for QBD
and M/G/1 problems. For G/M/1 and non-skip-free problems we rely on the
reduction to M/G/1 described in section 2.

3.1 Shift techniques

For the sake of simplicity, assume that the matrix equation (5) can be rewritten
as

G =
M∑

i=−1

AiG
i+1. (20)

In practice, this is the rule for the decay properties of the blocks Ai. According
to the sign of the drift µ define the following blocks Ãi, i ≥ −1. If µ ≤ 0 set

Ã−1 = A−1(I −Q),
Ãi = Ai − (

∑i
j=−1 Aj − I)Q, 0 ≤ i ≤ M,

6

where Q = euT and u is any vector such that eT u = 1. If µ > 0 set

Ã−1 = A−1

Ã0 = A0 + EA−1

Ãi = Ai − E(I −∑i−1
j=−1 Aj), 2 ≤ i ≤ M,

where E = uvT , with u being any nonzero vector, and v such that vT u = 1,
vT (

∑M
i=−1 Ai) = vT .

Moreover, let us introduce the new equation

X =
M∑

i=−1

ÃiX
i+1. (21)

It can be proved (see [4]) that the solution G̃ of smallest spectral radius of (21)
is

G̃ = G−Q if µ ≤ 0,

G̃ = G if µ > 0.

For QBD problems the new equation turns into

X = Ã−1 + Ã0X + Ã1X
2 (22)

where for µ ≤ 0 one has Ã−1 = A−1(I−Q), Ã0 = A0 +A1Q, Ã1 = A1, whereas
for µ > 0 one has Ã−1 = A−1, Ã0 = A0 + EA−1, Ã1 = (I − E)A1.

It has been proved that the roots of the polynomials ã(z) = det(λI −∑M
i=−1 zi+1Ãi), and a(z) = det(λI−∑M

i=−1 zi+1Ai), are the same except for the
root z = 1 of a(z) which is shifted to zero or to the infinity for ã(z) according
to the sign of the drift µ.

This tiny difference on the roots of a(z) and ã(z) makes a great difference in
the convergence speed of the algorithms for the solution of matrix equations if
applied to (20) or to (21). In fact, iterative methods converge faster if applied
to equation (21). For more details on this shift technique we refer the reader to
[12], [4], [2].

3.2 Functional iterations

Methods based on functional iterations generate a sequence {Xk}k of matrices
converging to the solution G once X0 has been suitably choosen. We recall the
three main iterations called natural, traditional and U-based:

Xk+1 =
+∞∑

i=−1

AiX
i+1
k natural, (23)

Xk+1 = (I −A0)−1
(
A−1 +

+∞∑

i=1

AiX
i+1
k

)
traditional, (24)

7

Xk+1 =
(
I −

+∞∑

i=0

AiX
i
k

)−1

A−1 U-based. (25)

If the initial matrix is X0 = 0 then monotonic convergence of Xk to G occurs for
all the three sequences. Convergence is linear if µ 6= 0, sublinear if µ = 0. If the
initial matrix is X0 = σI, where σ = ρ(G) and ρ(·) denotes the spectral radius,
then monotonicity is lost but the convergence is faster though still linear. We
recall that if µ ≤ 0 then σ = 1, if µ > 0 then σ is the smallest positive solution
of the equation z = ρ(A(z)), where A(z) =

∑+∞
i=−1 zi+1Ai.

The three iterations above can be applied to the “shifted” equation (21). Lo-
cal convergence is guaranteed but no analysis has been carried out concerning
the convergence properties related to the choice of X0. More details on func-
tional iterations can be found in [4, 13, 18]. For non-skip-free Markov chains
one has to compute the matrix G of (17). In this case it is sufficient to compute
the blocks G1, . . . , GN . These matrices can be approximated by means of the
sequence of block row vectors xk, k ≥ 0 generated from x0 by:

xk+1 = [A−N , A−N+1, . . . , A−1] +
M+N∑

i=N

Ai−NxkC(xk)i−N .

In fact, if x0 = 0 the sequence {xk} monotonically converges to [G1, . . . , GN] of
(18). The products rj = xkC(xk)j for j = 0, . . . ,M , are computed by means
of the equation

rj+1 = rjC(r), j = 0, 1, . . . ,M

starting with r0 = xk. This iteration has been introduced and analyzed in [10].
A faster convergence method is Newton’s iteration [4], [14]. This method

generates the sequence Xk+1 = Xk −Wn, k ≥ 0, X0 = 0, where Wk solves the
linear matrix equation

Wk −Kk

+∞∑

i=1

Ai

i−1∑

j=0

Xj
kWkXi−j−1

k KkA−1 = Xk −KkA−1

and Kk = (I−∑+∞
i=0 AiX

i
k)−1. Its convergence is quadratic if µ 6= 0. The above

matrix equation can be solved by means of O(m6) arithmetic operations. For
QBD Markov chains the complexity reduces to O(m3).

3.3 Invariant subspaces method

The invariant subspaces method consists in approximating the minimal nonneg-
ative solution G of the matrix equation (20) by approximating the left invariant
subspace of a suitable block companion matrix. The method can be applied
only if µ 6= 0.

Define the matrix polynomial H(t) =
∑N

i=0 tiHi as

H(t) = (1− t)N−1(1 + t)I −
N∑

i=0

(1− t)N−i(1 + t)iAi−1,

8

and the matrices Ĥi = H−1
N Hi, i = 0, . . . , N − 1. Set h = −[Ĥ0, . . . , ĤN−1] and

introduce the matrix

F = C(h) + sign(µ)yxT /(xT y),

where

xT =
[
xT

0 Ĥ1 xT
0 Ĥ2 · · · xT

0 ĤN−1 xT
0

]
, y =




y0

0
...
0


 ,

and x0, y0 are two vectors such that xT
0 Ĥ0 = 0, Ĥ0y0 = 0.

Define the matrix sign S = Sign(F) given by S = limk Sk, where Sk is the
sequence generated by

{
S0 = F
Sk+1 = 1

2

(
Sk + S−1

k

)
, k ≥ 0.

(26)

Then I − S has rank m and by means of a rank revealing QR factorization of
I −S it is possibe to compute an Nm×m matrix T whose columns are a basis
of the linear space spanned by the columns of I − S. Denoting T1 and T2 the
submatrices of T made up by the rows 1, 2, . . . ,m and m + 1,m + 2, . . . , 2m, it
holds

G = (T1 + T2)(T1 − T2)−1.

For positive recurrent and transient Markov chains the convergence of Sk to S
is quadratic.

The matrix sign S can be computed by means of the iteration (26) which can
be stopped if ||Sk−Sk+1|| < ε for some matrix norm || · || and for a given ε > 0.
A different approach is to compute S by means of the Schur decomposition
of F . Acceleration techniques have been devised based on the computation of
some determinants. For more details and for the theory behind this technique
we refer the reader to [4] and [1]. Comparisons between cyclic reduction and
invariant subspace can be found in [19], [3].

3.4 Logarithmic reduction and cyclic reduction for QBD

Logarithmic reduction [15], [4] and cyclic reduction [5], [4] generate sequences
of matrices converging quadratically to G provided that µ 6= 0. If µ = 0,
convergence generally turns to linear.

If these iterations are applied to the shifted equation (21) then quadratic
convergence still occurs if µ = 0.

3.5 Logarithmic reduction for QBD

Logarithmic reduction is synthesized by the following equations:

B
(k+1)
−1 = (C(k))−1(B(k)

−1)2,

B
(k+1)
1 = (C(k))−1(B(k)

1)2, k ≥ 0,
(27)

9

where
C(k) = I −B

(k)
−1B

(k)
1 −B

(k)
1 B

(k)
−1 (28)

and
B

(0)
−1 = (I −A0)−1A−1, B

(0)
1 = (I −A0)−1A1.

The sequence

Gk = B
(0)
−1 +

k∑

i=1




i−1∏

j=0

B
(j)
1


 B

(i)
−1 (29)

converges to G.
Logarithmic reduction can be applied to the shifted equation (22) by defining

B
(0)
−1 = (I − Ã0)−1Ã−1, B

(0)
1 = (I − Ã0)−1Ã1. The sequence Gk of (29)

converges to the solution G̃ of (22).

3.6 Cyclic reduction for QBD

Cyclic reduction is synthesized by the following equations:

K(k) = (I −A
(k)
0)−1,

A
(k+1)
−1 = A

(k)
−1K(k)A

(k)
−1 ,

A
(k+1)
0 = A

(k)
0 + A

(k)
−1K(k)A

(k)
1 + A

(k)
1 K(k)A

(k)
−1 ,

A
(k+1)
1 = A

(k)
1 K(k)A

(k)
1 ,

Â
(k+1)
0 = Â

(k)
0 + A

(k)
1 K(k)A

(k)
−1 ,

(30)

for n = 0, 1, . . ., and Â
(0)
0 = A0, A

(0)
i = Ai, i = −1, 0, 1. The sequence

Gk = (I − Â
(k)
0)−1A−1 (31)

converges to G.
Cyclic reduction can be applied to the shifted equation (22) by defining

Â
(0)
0 = Ã0, A

(0)
i = Ãi, i = −1, 0, 1. If µ ≤ 0 the sequence Gk of (31) converges

to G. If µ > 0 the sequence generated by Gk = (I − Â
(k)
0)−1Ã−1 converges to

G.

3.7 Cyclic reduction for M/G/1-type Markov chains

Cyclic reduction can be extended to M/G/1 Markov chains by means of a func-
tional interpretation. Given a matrix power series F (z) =

∑+∞
i=0 ziFi define the

matrix power series

Feven(z) =
1
2
(F (

√
z) + F (−√z)) =

+∞∑

i=0

ziF2i,

Fodd(z) =
1

2
√

z
(F (

√
z)− F (−√z)) =

+∞∑

i=0

ziF2i+1,

10

Let A(0)(z) =
∑+∞

i=−1 zi+1Ai, Â(0)(z) =
∑+∞

i=0 ziAi, and define

K(k)(z) = (I −A
(k)
odd(z))−1,

A(k+1)(z) = zA
(k)
odd(z) + A(k)

even(z)K(k)(z)A(k)
even(z),

Â(k+1)(z) = Â(k)
even(z) + Â

(k)
odd(z)K(k)(z)A(k)

even(z).

(32)

Then the sequence
Gk = (I − Â(k)(0))−1A−1 (33)

converges to G. Convergence is quadratic if µ 6= 0, and is generally linear if
µ = 0.

Cyclic reduction can be applied to the shifted equation (21) by defining
A(0)(z) =

∑+∞
i=−1 zi+1Ãi, Â(0)(z) =

∑+∞
i=0 ziÃi. If µ ≤ 0 the sequence Gk of (33)

converges to G. If µ > 0 the sequence generated by Gk = (I − Â(k)(0))−1Ã−1

converges to G. If cyclic reduction is applied to the shifted equation (21) then
convergence is quadratic even if µ = 0.

Concerning the different ways for implementing cyclic reduction we refer the
reader to the book [4, Chapter 7]. One of the most efficient implementations
relies on the technique of evaluation/interpolation where the computation of
the coefficients of the matrix power series A(k+1)(z) is performed by means of
a point-wise computation of the right-hand side of (32) at the qth roots of
the unity, followed by an interpolation stage. Here q must be a sufficiently
large integer such that

∑
i≥q ||A(k+1)

i || is negligible for some matrix norm || · ||.
Such an integer q exists for the decay to zero of the coefficients A

(k+1)
i and can

be efficiently computed by means of a suitable technique of [6]. The method
obtained in this way is called point-wise cyclic reduction, its efficiency relies
on the use of FFT for performing the evaluation and the interpolation stages
[6]. Its complexity is related to the number of interpolation points needed in
the computation, or, equivalently, to the value of the numerical degrees of the
matrix power series A(k)(z).

3.8 The Ramaswami reduction

The Ramaswami reduction [23], [4], [7] allows one to reduce an M/G/1-type
Markov chain into a QBD process with blocks of infinite size. In this way,
algorithms for solving a QBD can be adapted for solving an M/G/1-type Markov
chain.

Define the matrices

A1 =




0 0
I 0

I 0
.

0




, (34)

11

A0 =




A0 A1 A2 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .


 , (35)

and

A−1 =




A−1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .


 . (36)

Then the matrix

G =




G 0 0 · · ·
G2 0 0 · · ·
G3 0 0 · · ·
...

...
...

. . .


 (37)

is the minimal nonnegative solution of the equation G = A−1 + A0G + A1G2,
where G is the minimal nonnegative solution of (2).

Logarithmic reduction and cyclic reduction can be applied for computing G
in order to compute G. The shift technique of section 3.1 can be applied either
to the original equation or to the infinite QBD obtained after the Ramaswami
reduction.

4 Fortran 95 subroutines

Most part of the algorithms described in previous sections has been implemented
in Fortran 95. The subroutines can be called by the user inside a main program,
using an appropriate module, and linking then the program with the libraries
libsmcsolver.a, lapack95, lapack, blas (see Section 6 for more detail on compila-
tion).

Appendix A list all the symbols of functions, subroutines, and variables
defined in the library libsmcsolver.a. Most of them are used internally. We
document here the subroutines and the variables that are of interest for a user
who writes his own main program and wishes to use the algorithms implemented
in the library.

4.1 Basic Routines

The first two subroutines crqbd and lrqbd compute the minimal solutions G,
R and U of the equations (2). They have the same sintax, i.e.,

use smc int
subroutine crqbd(An1, A0, A1, G, R, U, doshift, dogth,&

drift, nerror, maxit)
subroutine lrqbd(An1, A0, A1, G, R, U, doshift, dogth,&

drift, nerror, maxit)

12

• An1, A0 and A1 are the matrix variables containing the matrices A−1, A0

and A1 respectively;
• The output variable G contain the solution G;
• The optional output variables R and U contain the solutions R and U ,

respectively;
• the logical variables doshift and dogth, if .true., perform the shift

acceleration of [8, Section III] and the GTH trick of [11] for improving
numerical stability. This trick cannot be applied if the shift acceleration
is performed;

• drift contains the value of the drift µ;
• The optional input variables nerror and maxit contain the error bound

for the stop condition in the form of an integer exponent (the actual error
is epsilon(1.d0)∗10.0d0∗∗nerror, default nerror = 0) and the maximum
number of allowed iterations (by default maxit=50), respectively.

The subroutines pwcr and spwcr compute the solution of the equation (5),
(or to be more precise of (6)) by means of the algorithm of point-wise cyclic
reduction without the shift acceleration (pwcr) and with the shift acceleration
(spwcr). Their sintax is the same, i.e.,

use pwcr interface
subroutine pwcr(A, eps, G, err, maxit, intpmax)
subroutine spwcr(A, eps, G, err, maxit, intpmax)

• A is a three-way array where A(:,:,k) contains the block Ak−2 for k =
1, 2, . . . , K+2, (where K is such that

∑K
i=−1 Ai is numerically stochastic);

• eps contain an error bound used in the stop condition (the default value
is eps=1e-12);

• The output variable G, contains the solution G of the matrix equation (6);
• err is the residual error;
• maxit and intpmax are the maximum number of iterations (by default
maxit=50) and an index of the maximum number of interpolation points
(= 256∗2intpmax) (by default intpmax=1 and the number of interpolation
points is 256), respectively.

The subroutine fi computes the solution G of (2) or (6) by means of func-
tional iterations. The syntax is

use fi int
subroutine fi(A, doshift, method, eps, maxit,&

x0, G, drift, err)

• A is a three-way array: for QDB problems A(:,:,k) contains the blocks
A−1, A0, A1, for M/G/1 problems contains the blocks A−1, A0, . . . , AK ,
(where K is such that

∑K
i=−1 Ai is numerically stochastic) ;

• doshift is an optional logical variable, if .true. it performs the shift
technique (default doshift=.false.);

13

• method is an optional integer variable which selects the functional itera-
tion: 1→Natural iteration, 2→Traditional iteration, 3→Method based on
the matrix U (default method=3);

• optional input variables eps and maxit contain an error bound on the stop
condition (by default eps=1e-12) and the maximum number of iterations
(by default maxit=10000);

• X0 is an optional input variable which contains the initial approximation
(by default X0=0 if doshift=.true. and X0=rI if doshift=.false. with
r=ρ(G));

• output variable G contains the solution G of the matrix equation (2) or
(6)

• output variables drift and err contain the drift µ and the residual error,
respectively.

The subroutine is implements the invariant subspace method for solving (2)
or (6). Its sintax is

use is int
subroutine is(A, method, eps, maxit, G, drift, err)

• A is a three-way array: for QDB problems A(:,:,k) contains the blocks
A−1, A0, A1, for M/G/1 problems contains the blocks A−1, A0, . . . , AK ,
(where K is such that

∑K
i=−1 Ai is numerically stochastic);

• method is an optional integer variable which selects the algorithm for com-
puting the invariant subspace: 1→ Matrix Sign Iteration; 2→ Matrix Sign
Iteration with the Balzer acceleration; 3→ Schur Decomposition; by de-
fault method=2;

• The optional input variables eps and maxit contain an error bound on
the stop condition (by default eps=1e-12) and the maximum number of
iterations (by default maxit=50);

• The output variable G contain the solution G of the matrix equation (2)
or (5);

• The output variables drift and err contain the drift µ and the residual
error, respectively.

4.2 Auxiliary Routines

The following routine converts a G/M/1 problem in an M/G/1 problem.
Its sintax is
use smc int

subroutine gm1tomg1(A, AA, v)

• A is the input three-way array where A(:,:,k) contains the block A2−k

for k = 1, 2, . . . , K + 2 of the original G/M/1 problem.

14

• AA is the output three-way array where AA(:,:,k) contains the block Ak−2

for k = 1, 2, . . . , K + 2 of the equivalent M/G/1 problem;
• v is a vector containing the strictly positive stationary probability vector

of A that is computed during the conversion.

The following routines compute U from G and R from U , respectively, in
QBD problems. Their sintax is

use smc int
subroutine gtou(A0, A1, G, U)
subroutine utor(A1, U, R)

• A0 and A1 are the matrix variables containing the matrices A0 and A1

respectively;
• The variables G R and U contain the solutions G R and U , respectively;

The following routines compute the norm of the differences between left and
right side of equations (2), (6), (11) for the numerical solutions. Their sintax is

use smc int
subroutine qbdrres(Am1, A0, A1, R, res)
subroutine qbdures(Am1, A0, A1, U, res)
subroutine rresidual(A, R, res)

use fi int
subroutine gresidual(A,G,res)

• Am1, A0 and A1 are the matrix variables containing the matrices A−1, A0

and A1 respectively, in the QBD problem;
• A is a three-way array: for M/G/1 problems A(:,:,k) contains the blocks

Ak−2, for k = 1, 2, . . . , K + 2 for G/M/1 problems A(:,:,k) contains the
blocks A2−k for k = 1, 2, . . . , K + 2;

• The variables G and R contain the numerical solutions G and R respec-
tively;

• res is the computed norm.

To compute π we have the following routines:
use pi int

subroutine qbdpi(Am1, A0, A1, Bm1, B0, B1, R, &
maxnc, epspi, pi0, pi, pinc)

subroutine mg1pi(A, B0, B, Bm1, G, &
maxnc, epspi, pi0, pi, pinc)

subroutine gm1pi(A, B, B0, Bm1, R, &
maxnc, epspi, pi0, pi, pinc)

• for QBD problems Am1, A0 and A1 are the matrix variables containing
the matrices A−1, A0 and A1 respectively;

15

• A is a three-way array: for M/G/1 problems A(:,:,k) contains the blocks
Ak−2, for k = 1, 2, . . . , K + 2

• A is a three-way array: for G/M/1 problems A(:,:,k) contains the blocks
A2−k for k = 1, 2, . . . ,K + 2;

• for QBD problems Bm1, B0 and B1 are the matrix variables containing
the matrices B−1, B0 and B1 respectively;

• B0 is the matrix B0;
• B1 for QBD and M/G/1 is the matrix B1;
• Bm1 for QBD and M/G/1 is the matrix B−1; for G/M/1 is the matrix B1

• B is a three-way array: for M/G/1 problems B(:,:,k) contains the blocks
B2−k, for k = 1, 2, . . . , K + 2, for G/M/1 problems it contains the blocks
Bk−2 for k = 1, 2, . . . , K + 2;

• G, R contain the solutions G and R respectively;
• maxnc contains the maximum number of vectors πk to compute.
• epspi contain an error bound used in the stop condition (the default value

is eps=1e-12);
• pi0, pi are the π0 and a vector containig the πk of (3) for QBD, of (7)

and (9) for M/G/1, and of (12) and (13) for G/M/1 problems, respectively;
• pinc is the number of computed blocks of components of π.

4.3 Internal Routines

function binomial(n,k)

• n, k are integers
• the output of the function is a double precision real.

4.4 Blas and Lapack Routines

There are very few calls from the SMCSOLVER routines to Blas, Lapack and
Lapack95 routines:
la gesv
la getrf
la getri
la gees
dgeqp3
dorgqr
These, in turn, call some other Blas and Lapack routines, and so on: as a rule,
names of Blas, Lapack and Lapack95 routines cannot be reassigned.

16

4.5 Global Variables

Variables in Module ponte f f:

• fdrift
some routines save the drift value into this variable; this has been a last
minute emergency patch and will be changed in future versions.

• debug
if debug=.true. some debugging printouts will appear in some situations;
it is not a sistematic feature, it did help in debugging the code; anyway
the user can add some code lines like
if (debug) write(*,*) ”some message or some data...”
anywhere in the code to check for some values, and switch the printouts
on or off just changing the value of the variable debug.

• verb
this variable controls the verbosity of the printouts during execution of
code; if verb=.true. at each iteration there will be a printout otherwise
just a * will be printed.

Variables in Module smc tools:

• dp
dp=kind(0.d0) is used in dimensionig real double precision, as a shortcut.

• info
usually 0, is different from 0 if some allocation has failed.

17

5 The graphical interface

We have implemented a simple Graphical Interface in C relying on the
GTK+ 2.0 graphical libraries.

The executable runs in Linux Workstations where the corresponding GTK
shared libraries are available.

The Fortran routines are usually linked statically, so that the executable
needs neither Fortran Compiler nor Fortran run-time libraries to run.

A fully statically linked program is discouraged by GTK+ developers.

5.1 The menus

By means of menus in the main window (Figure 1), the user can easily choose
the kind of problem (QBD, M/G/1, G/M/1), either by loading the input data
from some external ASCII files or by loading one of the examples provided in
the package.

Figure 1: Graphical User Interface: main window, file menu

Several formats are supported for the input files. In a first step the file is
opened, read and analyzed in an attempt to discover its format; in a second
step the matrices are allocated, the file is re-read and the matrices are loaded
in memory. Fortran formats need some simple header with dimensioning data.
Matlab formats rely on counting number of lines and number of floats in a line.
More detail in the next section.

18

Selecting one of the examples from the Examples menu, an example window
(Figure 2) will appear, allowing the user to to set up some parameters for the
selected Example.

Figure 2: Graphical User Interface: examples window

From the main window’s menu Algorithms (Figure 3) the user can choose
an algorithm among Cyclic Reduction, Logarithmic Reduction, Functional It-
erations, Invariant Subspace. For each algorithm the user can set additional
optional parameters like the shift acceleration, the diagonal adjustment, or can
modify the values of the maximum number of iterations (default 50, range from
5 to 15000), the number of interpolations points in cyclic reduction (defaut 512,
range from 256 to 65536), the error bound for the stop condition (default 10−12,
range from 10−5 to 10−16). Morover, in the case of the Functional Iterations
Algorithm, the starting matrix can be read from external file (internal choices
are the null and the identity matrices).

19

Figure 3: Graphical User Interface: main window, algorithms menu

Figure 4: Graphical User Interface: main window, goals menu

For each kind of problem, the user can select the goals (Figure 4), for in-
stance, computing G, R, U or π. The length of Pi is selectable in the same
menu.

20

Figure 5: Graphical User Interface: main window, options menu

Warnings are flashed in the status line of the window for inconsistent choices
of the user and also if the selected algorithms or options are not available.

The Options menu allows to select the level of verbosity and the presence of
timing information. The debug option will print on the tty some messages of
interest for the developers only. The number of digits to write in saving ASCII
outputs files can be set up in Options Menu too.

The use of multithread support enables the user to start/stop a computation
just by pressing a button.

During the numerical computation, partial results, timings, and information
on the evolution of the computation are displayed in real time on a scrollable
viewport of the main window. The buffer of this viewport with the log of the
session can be appended to a file.

A simple online window help is available.

5.2 Matrix Editor

A viewing and editing graphical tool allows to display and edit input matrices
and to view and compare output matrices. This is performed in a graphical way
by representing each element of the matrices as a small gray or colored square,
where the intensity varies according to the magnitude of the number.

A good choice of the color scale allows an immediate and intuitive viewing
of the structure of the matrix:

21

Figure 6: Graphical User Interface: Edit A

The standard color scale is a linear one. User color scale can be linear in
the range [0, 1] or in the range between the minimun nonzero value and the
maximum value; adaptive scale is a non linear color scale, that attemps to
assign as many of the 256 levels as possible.

The numerical values of the entries are displayed and edited in a separate
small window as the user moves the cursor on the colored squares of the matrix
area.

To edit a value, click a mouse botton: the entry with the matrix indexes
will freeze, and the entry with the value becomes editable; change the value and
finalize the change with the Enter key.

In View/Edit Matrix A the block index varies from 1 to K + 2; these val-
ues for QBD problems corresponds to A−1, A0, A1, for M/G/1 corresponds to
A−1, A0, A1, . . . , AK , and for G/M/1 corresponds to A1, A0, A−1, . . . , A−K .

Matrices G, R, U , or the vector π can be viewed but not edited. It is possible
to compare them with matrices present in a file: comparison will compute the

22

norm of the difference between the matrix present in memory and the matrix
read from the target file.

5.3 File Formats

The computed solutions (matrices, vectors) can be saved in several ASCII
formats. Morover a sparse matrix format is suppported for reading or writing
data (computation do not use sparse matrix format internally).

Figure 7: Graphical User Interface: saving A

Remember that the number of digits that are written for every number saved
in ASCII Files is selectable in the Options Menu (Figure 5). The choices are
8,15,16,17 digits in the mantissa; the default is 16 digits.

We list all the available Save File Formats:

Save G or U or R:

• Matlab
the floats of a matrix row are written in one line, Matlab counts the
number of lines and the number of floats in each line for detecting the
number of rows and colums of the matrix;

• Fortran ASCII 2dim+data
the first line holds two integers, the number of rows and of columns of
the matrix; the second (very long) line holds all the floats, column after
column, with a space between floats and at the beginning of each line;

• Fortran ASCII 1dim+data
the matrix is a square one, and the first line holds one integer, the number
of rows equal to the number of colums; the second (very long) line holds

23

all the floats, column after column, with a space between floats and at the
beginning of each line, as before.

Save G,U,R (QBD only):

• Matlab dir with 3 files
a directory is created and the 3 matrices G, R, U are saved as Matlab
ASCII matrices in the files G, R, U.

• Fortran 3 x (2 dim + data)
the 3 matrices G, R, U are written in one file, one after the other, each in
two lines, first line holds two integers, the number of rows and of columns
of the matrix; the second (very long) line holds all the floats, column after
column, with a space between floats and at the beginning of each line;

• Fortran 1 dim + 3 x data
the first line holds one integer, the number of rows or of columns (they
are equal), the second line holds all the floats of the 3 matrices G, R, U ,
one after the other, column after column, with a space between floats and
at the beginning of each line.

Save Pi:

• Matlab
π is written in Matlab ASCII style, as a single line;

• Fortran dim+data
The file has two lines: the first line hold one integer, the number of com-
ponents of π, and the second line holds the floats, with a space between
floats and at the beginning of each line.

Save A:

• Matlab dir with files
a directory is created; each of the blocks A(:, :, k), with k = 1, 2, . . . , K+2,
is saved in a separate file, in Matlab ASCII style and with names A00001,
A00002,

• Matlab single file
the blocks A(:, :, k), with k = 1, 2, . . . ,K + 2, are put side by side in
one row; the resulting rectangular matrix is written in the file, in Matlab
ASCII style. The number of columns divided the number of rows is the
number of (square) blocks.

• Fortran #blocks , + repeated (dims, data)
the first line holds one integer, the number of blocks; for each block there
follows two lines, the first with two integers, row and columns number,
the second (very long) line holds all the floats of the block, column after
column, with a space between floats and at the beginning of each line;

• Fortran #blocks, dims, + all data
the first line holds two integers, the number of blocks and the number
of row (that is equal to the number of columns); the second (very long)
line holds all the floats, block after block, and in each block column after
column, with a space between floats and at the beginning of each line;

24

• Fortran Sparse Matrix format
the first line has 3 integers, the number of blocks, of rows, and of columns;
there follows one line for each non zero term of the matrix, holding 3
integers and one float, i.e. block index k, row index i, column index j,
and the float A(i, j, k).

Save B:

• B0 Matlab
the floats of a matrix row are written in one line, Matlab counts the
number of lines and the number of floats in each line for detecting the
number of rows and colums of the matrix;

• BN1 Matlab
the floats of a matrix row are written in one line, Matlab counts the
number of lines and the number of floats in each line for detecting the
number of rows and colums of the matrix;

• B Matlab
the blocks B(:, :, k), with k = 1, 2, . . . ,K + 2, are put side by side in
one row; the resulting rectangular matrix is written in the file, in Matlab
ASCII style. The number of columns is the product of the number of
blocks by the number of columns of each block. One of the two numbers
must be known, otherwise reconstructing the three way matrix B from
the file will be impossible.

• B0 Fortran
the first line holds two integer, rows and columns numbers; the second line
holds all the floats, column after column, with a space between floats and
at the beginning of each line;

• BN1 Fortran
the first line holds two integer, rows and columns numbers; the second line
holds all the floats, column after column, with a space between floats and
at the beginning of each line;

• B Fortran
the first line holds three integers, the number of blocks, the number of
rows and the number of columns of the three way matrix B; for each
block there is one line holding all the floats, column after column, with a
space between floats and at the beginning of each line;

Read Files:

The program will do its best to understand the format of the input file and to
read the data. It will detect the presence of ASCII chars > 127, and invalidate
the file. It will discard lines beginning with # or ! or % or @ considering
them comment text. It will try to detect Matlab ASCII files, as files than
consists of consecutive lines with the same number of floats and nothing else
(no comments or extra chars allowed in Matlab files !). Fortran data files are

25

supposed to have some form of header with integers referring to dimensions of
the matrices. Sparse format files will have lines with 3 indexes and a float.

Be aware that the routine that analize the floats will not read correctly very
long integers (> 9 digits) or very long float (mantissa > 17 digits or exponent
> 3 digits).

6 Compiling SMCSolver 1.2

To compile the program you will need:

• A Linux Workstation, complete with usual development programs;
• GNU gcc, make;
• libraries and header files of gtk+-2, gthread-2.0, ncurses and librt;
• A Fortran 95 Compiler like Lahey/Fujitsu (R) lf95, of Intel (R) Fortran

Compiler ifort or f95 NAG(R) Fortran Compiler or GNU g95;
• the SMCSolver 1.2 sources (from http://bezout.dm.unipi.it/SMCSolver/

or from one of the authors by e-mail).

Untar the sources, and change the make.inc, uncommenting the lines for
your Fortran Compiler and commenting the lines for different Fortran Compil-
ers. In case you mess up the file, make.inc.default has the original version.
The files make.inc.g95, make.inc.ifort, make.inc.lf95, make.inc.nag are
samples tested to work respectively with GNU g95, Intel Fortran, Lahey For-
tran, NAG Fortran.

If you have installed on your Workstation optimized versions of BLAS, LA-
PACK, LAPACK95 libraries and modules, let the variable FFLIBS point to the
directory containing them. Otherwise you can use the minimum set of routines
extracted from BLAS, LAPACK, LAPACK95 and included in the distribution.
In this case the compiler first step will be to compile the required libraries and
modules.

Remember that usually the linker requires that a library has a name be-
ginning with lib (like libblas.a or liblapack.a) and refers to it with the flags -I
(for modules directory), -L (for library directory), -l (for libraries, like -lblas
-llapack).

When you are ready to compile, you can make the program:

• make will compile the program SMCSolver;
• make clean will delete modules, objects and the executable;
• make cleanall will delete libraries, modules, objects and the executable;
• make test-lib will compile the library libsmcsolver.a and a sample

main program test-lib.f90, linking it to the library; In this case C
compiler and graphic libraries are not needed.

• make dist must NOT be run by users, as it will change the TIMESTAMP
and recreate a SMCSolver 1.2.ACTUAL DATE.tgz.

26

• several other less interesting targets are availiable for the make command.

Several warnings from the compilers are normal. Errors in compilation can
arise from several situations:

• if BLAS, LAPACK, LAPACK95 libraries and modules are not present
in the system, the minimum set of them should be created by Fortran
Compiler as first step. These routines are well known and well debugged:
an error at this stage could mean a wrong flag passed to Fortran compiler
in the file make.inc.

• gcc will then compile the 11 C files, without linking them. An error at
this stage may point to missing or misplaced headers or non standard gcc
on your Linux installation.

• then the Fortran Compiler will compile the 15 Fortran 90 files. It may
fail if the Fortran Compiler lines in the make.inc are not correct for your
compiler.

• last step, the Fortran Compiler has to link all the objects with both static
and run time libraries, and this may fail if some library is not available,
or if some option in make.inc is not correct for your Fortran Compiler.

• if you change the Fortran Compiler, remember to do a make cleanall as
the Fortran libraries and modules of one Fortran Compiler will NOT work
with a different Compiler.

SMCSolver will need several shared run time libraries to execute and will
not start if some of these are missing. Moreover several icons and graphical
details of the windows are loaded dinamically from files of the running host by
gtk+-2.

If you are in doubt about the installed version of gtk libraries, use the com-
mand
pkg-config --modversion gtk+-2.0

Any version 2.x.y should be ok.
Compiling the library libsmcsolver.a does not requires the graphical li-

braries. To use a subroutine of the library, a Fortran 95 main program must
declare the use of the appropriate modules, and must be linked with the library
libsmcsolver.a, with lapack95, lapack and blas.

A simple example is the file test-lib.f90.

Acknowledgment

This work has been partially supported by MIUR grant number 2004015437.

27

References

[1] N. Akar and K. Sohraby. An invariant subspace approach in M/G/1 and
G/M/1 type Markov chains. Comm. Statist. Stochastic Models, 13(3):381–
416, 1997.

[2] D. A. Bini, L. Gemignani, and B. Meini. Solving certain matrix equations
by means of Toeplitz computations: algorithms and applications. In Fast
algorithms for structured matrices: theory and applications (South Hadley,
MA, 2001), volume 323 of Contemp. Math., pages 151–167. Amer. Math.
Soc., Providence, RI, 2003.

[3] D. A. Bini, G. Latouche, and B. Meini. Solving matrix polynomial equa-
tions arising in queueing problems. Linear Algebra Appl., 340:225–244,
2002.

[4] D. A. Bini, G. Latouche, and B. Meini. Numerical methods for structured
Markov chains. Numerical Mathematics and Scientific Computation. Ox-
ford University Press, New York, 2005. Oxford Science Publications.

[5] D. A. Bini and B. Meini. On the solution of a nonlinear matrix equation
arising in queueing problems. SIAM J. Matrix Anal. Appl., 17(4):906–926,
1996.

[6] D. A. Bini and B. Meini. Improved cyclic reduction for solving queueing
problems. Numer. Algorithms, 15(1):57–74, 1997.

[7] D. A. Bini, B. Meini, and V. Ramaswami. Analyzing M/G/1 paradigms
through QBDs: the role of the block structure in computing the matrix G.
In G. Latouche and P. Taylor, editors, Advances in Algorithmic Methods for
Stochastic Models, pages 73–86. Notable Publications, New Jersey, USA,
2000. Proceedings of the Third Conference on Matrix Analytic Methods.

[8] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov
chains solver: algorithms. Proceedings of SMCTOOLS, Pisa 2006, pages –,
2006.

[9] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt. Structured Markov
chains solver: software tools. Proceedings of SMCTOOLS, Pisa 2006,
pages –, 2006.

[10] H. R. Gail, S. L. Hantler, and B. A. Taylor. Non-skip-free M/G/1 and
G/M/1 type Markov chains. Adv. in Appl. Probab., 29(3):733–758, 1997.

[11] W. K. Grassmann, M. I. Taksar, and D. P. Heyman. Regenerative analysis
and steady state distributions for Markov chains. Oper. Res., 33(5):1107–
1116, 1985.

[12] C. He, B. Meini, and N. H. Rhee. A shifted cyclic reduction algorithm for
quasi-birth-death problems. SIAM J. Matrix Anal. Appl., 23(3):673–691
(electronic), 2001/02.

28

[13] G. Latouche. Algorithms for infinite Markov chains with repeating columns.
In Linear algebra, Markov chains, and queueing models (Minneapolis, MN,
1992), volume 48 of IMA Vol. Math. Appl., pages 231–265. Springer, New
York, 1993.

[14] G. Latouche. Newton’s iteration for non-linear equations in Markov chains.
IMA J. Numer. Anal., 14(4):583–598, 1994.

[15] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for
quasi-birth-death processes. J. Appl. Probab., 30(3):650–674, 1993.

[16] G. Latouche and V. Ramaswami. Introduction to matrix analytic methods
in stochastic modeling. ASA-SIAM Series on Statistics and Applied Prob-
ability. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 1999.

[17] B. Meini. An improved FFT-based version of Ramaswami’s formula.
Stochastic Models, 13(2):223–238, 1997.

[18] B. Meini. New convergence results on functional iteration techniques for
the numerical solution of M/G/1 type Markov chains. Numer. Math.,
78(1):39–58, 1997.

[19] B. Meini. Solving QBD problems: the cyclic reduction algorithm versus
the invariant subspace method. Adv. Perf. Anal., 1:215–225, 1998.

[20] M. F. Neuts. Matrix-geometric solutions in stochastic models, volume 2
of Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins
University Press, Baltimore, Md., 1981. An algorithmic approach.

[21] M. F. Neuts. Structured stochastic matrices of M/G/1 type and their ap-
plications, volume 5 of Probability: Pure and Applied. Marcel Dekker Inc.,
New York, 1989.

[22] V. Ramaswami. A stable recursion for the steady state vector in Markov
chains of M/G/1 type. Comm. Statist. Stochastic Models, 4(1):183–188,
1988.

[23] V. Ramaswami. The generality of Quasi Birth-and-Death processes. In
A. S. Alfa and S. R. Chakravarthy, editors, Advances in Matrix Analytic
Methods for Stochastic Models, pages 93–113. Notable Publications, NJ,
1998.

29

APPENDIX A

We list here the content of all the Fortran 95 modules:

module fft interface.mod

subroutine iffts1
subroutine ffts2
subroutine ffts1
subroutine fillroots
subroutine fft1
subroutine ifft1
subroutine ftb1
subroutine ftb2
subroutine iftb2
subroutine iftb1
subroutine twiddle
subroutine itwiddle

module fi int.mod

subroutine fi
subroutine fi n
subroutine fi t
subroutine fi u
subroutine gresidual

module is int.mod

subroutine is
function drft mg1

module pi int.mod

subroutine qbdpi
subroutine mg1pi
subroutine gm1pi

module ponte f f.mod

A
B
G
R
U

Pi
X0
B0
BN1
Pi0
fdrift
debug
verb
timing
finish
wout

module pwcr interface.mod

subroutine pwcr
subroutine computeG
subroutine residual
subroutine spwcr
subroutine scomputeG

module roots.mod

wr
wi
wwr
wwi

module schur interface.mod

subroutine schur
subroutine test
subroutine sc1p
subroutine sschur
subroutine stest
subroutine sc2p
subroutine scc2p
subroutine sc1
subroutine sc2
subroutine prodc
subroutine means
subroutine pmeans

30

subroutine scc2
subroutine solver
subroutine solvec

module smc int.mod

subroutine drft
subroutine gth
subroutine crqbd
subroutine lrqbd
subroutine bgth
subroutine shift
subroutine gm1tomg1
subroutine rresidual
subroutine gtou
subroutine utor
subroutine qbdrres

subroutine qbdures

module smc tools.mod

dp
info

Other Routines:

function binomial
function sel
subroutine append fifo
subroutine print it
subroutine print it
subroutine print it nolf
subroutine print it nolf

31

