SMCSolver: Structured Markov Chains Solver

Dario A. Bini, Beatrice Meini
and Sergio Steffe
Dipartimento di Matematica
Università di Pisa
Pisa, Italy

Email: bini, meini, steffe @dm.unipi.it

November 29, 2006

Abstract

Extended documentation of the package SMCSolver (STRUCTURED MARKOV CHAINS SOLVER) Version 1.2.

1 Introduction

The package STRUCTURED MARKOV CHAINS SOLVER (SMCSolver) has the purpose of solving the most important classes of Markov chains encountered in queueing models.

This package implements the most advanced available algorithms for QBD, M/G/1 and G/M/1 problems.

The algorithms have been implemented as a Fortran 95 library.

A user-friendly graphical interface which allows an easy use of the software tool is provided. The interface is written in C and relies on the GTK graphic libraries, and runs on a LINUX WORKSTATION.

The package has been developed as part of a joint research collaboration with

Benny Van Houdt
Department of Mathematics and Computer Science
University of Antwerp
Antwerpen, Belgium

who wrote a MATLAB TOOLBOX with similar functionalities.

The joint work (Version 1.1) [8] [9] has been presented at the workshop: SMCTOOLS: Tools for solving Structured Markov Chains
organized within the: VALUETOOLS 2006 Conference, held in Pisa, Italy - October 10, 2006.

The Fortran code includes some code previously released by Bini and Meini, and available at http://www.netlib.org, plus new routines. The graphic interface has been written from scratch for SMCSolver.

The MATLAB Toolbox is available at:
http://www.win.ua.ac.be/~vanhoudt/
and SMCSolver is available at:
http://bezout.dm.unipi.it/SMCSolver/

2 The problems

We consider row stochastic matrices P which can be partitioned into blocks $P_{i,j}$. The matrix P is semi-infinite, i.e., its blocks $P_{i,j}$ have subscripts $i, j \in \mathbb{N}$. In this framework, the main computational problem is computing the invariant probability vector, i.e., the infinite nonnegative row vector π such that $\pi P = \pi$, and $\pi e = 1$. Here e is the vector with components equal to 1. Throughout the paper we assume P irreducible.

Due to the block structure of P, it is convenient to partition the vector π into subvectors π_i, $i \in \mathbb{N}$. According to the specific structure of P we may classify the Markov chains into suitable classes. In this section we refer the reader to the books [20, 21, 16, 4].

2.1 QBD Markov chains

QBD Markov chains are defined by the transition matrix

\[
P = \begin{bmatrix}
B_0 & B_1 & 0 \\
B_{-1} & A_0 & A_1 \\
& A_{-1} & A_0 & A_1 \\
& & A_{-1} & A_0 & \ddots \\
& & 0 & \ddots & \ddots \\
\end{bmatrix},
\]

where $A_{-1}, A_0, A_1 \in \mathbb{R}^{m \times m}$ and $B_{-1} \in \mathbb{R}^{m \times n}$, $B_0 \in \mathbb{R}^{n \times n}$, $B_1 \in \mathbb{R}^{n \times m}$, are nonnegative matrices such that $[B_0, B_1]$, $[B_{-1}, A_0, A_1]$ and $[A_{-1}, A_0, A_1]$ are row stochastic. Assume that $A = A_{-1} + A_0 + A_1$ is irreducible. The drift of a QBD Markov chain is defined by $\mu = \alpha^T(-A_{-1} + A_1)e$, where α is the stationary probability vector of A. We recall that a QBD is positive recurrent if $\mu < 0$, null recurrent if $\mu = 0$ and transient if $\mu > 0$.

Define G, R and U the minimal nonnegative solutions of the matrix equations

\[
\begin{align*}
G &= A_{-1} + A_0 G + A_1 G^2, \\
R &= A_1 + RA_0 + R^2A_{-1}, \\
U &= A_0 + A_1(I - U)^{-1}A_{-1}.
\end{align*}
\]
One has $G = (I - U)^{-1}A_{-1}$, $R = A_1(I - U)^{-1}$, moreover, if the QBD is positive recurrent, and if $B_1 = A_1$, it holds
\[
\begin{align*}
\pi_k &= \pi_0 R^k, \quad \text{for } k \geq 0, \\
\pi_0 (B_0 + B_{-1}G) &= \pi_0, \\
\pi_0 (I - R)^{-1}e &= 1.
\end{align*}
\] (3)

2.2 M/G/1-type Markov chains

M/G/1-type Markov chains are defined by the transition matrix
\[
P = \begin{bmatrix}
B_0 & B_1 & B_2 & B_3 & \ldots \\
B_{-1} & A_0 & A_1 & A_2 & \ldots \\
& A_{-1} & A_0 & A_1 & \ddots \\
& & A_{-1} & A_0 & \ddots \\
& & & 0 & \ddots \\
\end{bmatrix},
\] (4)

where A_i, for $i \geq -1$ are nonnegative matrices in $\mathbb{R}^{m \times m}$, B_0 is a nonnegative matrix in $\mathbb{R}^{n \times n}$, B_{-1} is a nonnegative matrix in $\mathbb{R}^{n \times m}$, and B_i, for $i \geq 1$ are nonnegative matrices in $\mathbb{R}^{m \times n}$, such that $[B_0, B_1, B_2, \ldots], [B_{-1}, A_0, A_1, A_2, \ldots], [A_{-1}, A_0, A_1, A_2, \ldots]$, are row stochastic. Throughout we assume $A = \sum_{i=-\infty}^{+\infty} A_i$ irreducible. The drift of an M/G/1-type Markov chain is defined by $\mu = \alpha^T a$, where α is the stationary probability vector of A and $a = \sum_{i=-\infty}^{+\infty} i A_i e$. We recall that a Markov chain is recurrent iff $\mu \leq 0$, positive recurrent iff $\mu < 0$ and $b = \sum_{i=-\infty}^{+\infty} i B_i e < \infty$, transient iff $\mu > 0$, null recurrent iff either $\mu = 0$ or $\mu < 0$ and $\sum_{i=-\infty}^{+\infty} i B_i e = \infty$.

Define G the minimal nonnegative solution of the matrix equation
\[
G = \sum_{i=-\infty}^{+\infty} A_i G^{i+1}.
\] (5)

In the applications, the infinite sequence of data A_i, $i = -1, 0, 1, 2, \ldots$, is truncated to the finite size K such that $\sum_{i=-1}^{K} A_i$ is numerically stochastic. In this way, the equation (5) turns into
\[
G = \sum_{i=-1}^{K} A_i G^{i+1}.
\] (6)

If the Markov chain is positive recurrent, and $B_{-1} = A_{-1}$ the following recursive formula due to Ramaswami [22] holds
\[
\pi_k = \left(\pi_0 B_0^* + \sum_{i=1}^{K-1} \pi_i A_{i-1}^* \right) (I - A_0^*)^{-1}, \quad \text{for } k \geq 1,
\] (7)
where

\[A_k^* = \sum_{i=k}^{+\infty} A_i G_i^{-k}, \quad B_k^* = \sum_{i=k}^{+\infty} B_i G_i^{-k}, \quad \text{for} \ k \geq 0, \]

(8)

and \(\pi_0 \) is such that

\[\pi_0 B_0^* = \pi_0, \quad \pi_0 B - \mu \pi_0 e + \pi_0 (I - B)(I - A)^{\#} a = -\mu, \]

(9)

where \(B = \sum_{i=0}^{+\infty} B_i \) and the operator \((\cdot)^{\#}\) denotes the group inverse. A fast version of Ramaswami formula based on FFT is shown in [17]. It outperforms the formula based on (7) and (8) only if a very large number of components \(\pi_n \) is required.

2.3 G/M/1-type Markov chains

G/M/1-type Markov chains are defined by the transition matrix

\[
P = \begin{bmatrix}
B_0 & B_1 & 0 \\
B_{-1} & A_0 & A_1 \\
B_{-2} & A_{-1} & A_0 \\
B_{-3} & A_{-2} & A_{-1} & A_0 & \cdots \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{bmatrix},
\]

(10)

where \(A_{-i}, i \geq -1 \) are nonnegative matrices in \(\mathbb{R}^{m \times m} \), \(B_0 \) is a nonnegative matrix in \(\mathbb{R}^{n \times n} \), \(B_1 \) is a nonnegative matrix in \(\mathbb{R}^{m \times n} \), and \(B_{-i}, i \geq 1 \) are nonnegative matrices in \(\mathbb{R}^{n \times m} \), and \([B_0, B_1], [B_{-1} + A_0 + A_1], [B_{-k}, A_{-k+1}, \ldots, A_0, A_1] \) are row stochastic for all \(k \geq 2 \).

If \(A = \sum_{i=-1}^{+\infty} A_{-i} \) is not stochastic, then the Markov chain is positive recurrent. If \(A \) is stochastic then the Markov chain is positive recurrent if \(\delta < 0 \), null recurrent if \(\delta = 0 \), and transient if \(\delta > 0 \), where \(\delta = \alpha^T a, \alpha \) is such that \(\alpha^T A = \alpha^T, \alpha^T e = 1 \), and \(a = \sum_{i=-1}^{+\infty} i A_{-i} e \).

Define \(R \) the minimal nonnegative solution of the matrix equation

\[R = \sum_{i=-1}^{+\infty} R^{i+1} A_{-i}. \]

(11)

If the Markov chain is positive recurrent, and if \(B_1 = A_1 \) then

\[\pi_k = \pi_0 R^k \quad \text{for} \ k \geq 1, \]

(12)

where \(\pi_0 \) is characterized by the system

\[\pi_0 = \pi_0 \sum_{i=0}^{+\infty} R^i B_{-i}, \quad \pi_0 (I - R)^{-1} e = 1. \]

(13)

It is worth mentioning that, if the matrix \(A = \sum_{i=-1}^{+\infty} A_{-i} \) is irreducible and stochastic, the connection between M/G/1 and G/M/1-type Markov chains
is extremely simple. Indeed, define $D = \text{diag}(\alpha)$, where α is the strictly positive stationary probability vector of A and define $\tilde{A}_i = D^{-1}A_i^T D$, for $i = -1, 0, 1, \ldots$. Now, take any solution R of (11) and define $\tilde{G} = D^{-1}R^T D$. It is easy to verify that \tilde{G} is a solution of

$$X = \sum_{i=-1}^{+\infty} \tilde{A}_i X^{i+1}. \quad (14)$$

A consequence of this property is that, to determine R for a positive recurrent $G/M/1$-type Markov chain is equivalent to determining G for a transient $M/G/1$-type Markov chain. Conversely, to determine R for a null recurrent or transient $G/M/1$-type Markov chain is equivalent to determining G for a recurrent $M/G/1$-type Markov chain.

2.4 The case of Non-skip-free processes

Markov chains which are non-skip-free to lower levels are defined by the generalized block upper Hessenberg matrix

$$P = \begin{bmatrix}
B_0 & B_1 & B_2 & B_3 & \ldots \\
B_{-1} & A_0 & A_1 & A_2 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
B_{-N+1} & A_{-N+2} & A_{-N+3} & A_{-N+4} & \ddots \\
A_{-N} & A_{-N+1} & A_{-N+2} & A_{-N+3} & \ddots \\
A_{-N} & A_{-N+1} & A_{-N+2} & \ddots & \ddots \\
A_{-N} & A_{-N+1} & \ddots & \ddots & \ddots \\
0 & & & & \ddots \\
\end{bmatrix}. \quad (15)$$

for $m \times m$ blocks A_i, $i \geq -N$ and B_i, $i \geq -N + 1$, where $N \geq 1$ is an integer. Markov chains which are non-skip-free to upper levels can be similarly defined in terms of generalized block lower Hessenberg matrix. The matrix P can be reblocked into blocks B_i, $i \geq 0$ and A_i, $i \geq -1$ of size mN as

$$P = \begin{bmatrix}
B_0 & B_1 & B_2 & B_3 & \ldots \\
A_{-1} & A_0 & A_1 & A_2 & \ldots \\
A_{-1} & A_0 & A_1 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
A_{-1} & A_0 & \ddots & \ddots & \ddots \\
\end{bmatrix}. \quad (16)$$

Therefore, in principle, it can be solved like a standard $M/G/1$ Markov chain. In this case, the solution \mathcal{G} of the equation $\mathcal{G} = \sum_{i=-1}^{+\infty} A_i \mathcal{G}^{i+1}$ can be written

5
as
\[G = U^{-1} L \] (17)

where
\[
U = \begin{bmatrix}
I & 0 \\
-G_1 & I \\
& \\
& \\
-\dot{G}_{N-1} & \cdots & -G_1 & I \\
\end{bmatrix}
\]
\[
L = \begin{bmatrix}
G_N & G_{N-1} & \cdots & G_1 \\
& \ddots & \ddots & \cdots \\
& & G_N & G_{N-1} \\
0 & \cdots & 0 & G_N
\end{bmatrix}
\] (18)

for suitable \(m \times m \) matrices \(G_1, \ldots, G_N \). The matrix \(G \) can also be written as
\[G = C(g)^N \]

where \(g = (G_N, G_{N-1}, \ldots, G_1) \) and the block companion matrix \(C \) associated with the block row vector \(r = (R_1, R_2, \ldots, R_N) \) is defined as:
\[
C(r) = \begin{bmatrix}
0 & I & 0 & \cdots & 0 \\
0 & 0 & I & \cdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0 & I \\
R_1 & R_2 & \cdots & \cdots & R_N
\end{bmatrix}
\] (19)

3 The algorithms

First we discuss some general techniques and then specific algorithms for QBD and M/G/1 problems. For G/M/1 and non-skip-free problems we rely on the reduction to M/G/1 described in section 2.

3.1 Shift techniques

For the sake of simplicity, assume that the matrix equation (5) can be rewritten as
\[G = \sum_{i=-1}^{M} A_i G^{i+1}. \] (20)

In practice, this is the rule for the decay properties of the blocks \(A_i \). According to the sign of the drift \(\mu \) define the following blocks \(\tilde{A}_i, i \geq -1 \). If \(\mu \leq 0 \) set
\[
\tilde{A}_{i-1} = A_{i-1}(I - Q),
\]
\[
\tilde{A}_i = A_i - (\sum_{j=-1}^{i} A_j - I)Q, \quad 0 \leq i \leq M,
\]
where \(Q = eu^T \) and \(u \) is any vector such that \(e^T u = 1 \). If \(\mu > 0 \) set
\[
\tilde{A}_{-1} = A_{-1} \\
\tilde{A}_0 = A_0 + EA_{-1} \\
\tilde{A}_i = A_i - E(I - \sum_{j=1}^{i-1} A_j), \quad 2 \leq i \leq M,
\]
where \(E = uu^T \), with \(u \) being any nonzero vector, and \(v \) such that \(v^T u = 1 \), \(v^T (\sum_{i=-1}^{M} A_i) = v^T \).

Moreover, let us introduce the new equation
\[
X = \sum_{i=-1}^{M} \tilde{A}_i X^{i+1}.
\]
(21)

It can be proved (see [4]) that the solution \(\tilde{G} \) of smallest spectral radius of (21) is
\[
\tilde{G} = G - Q \quad \text{if } \mu \leq 0, \\
\tilde{G} = G \quad \text{if } \mu > 0.
\]

For QBD problems the new equation turns into
\[
X = \tilde{A}_{-1} + \tilde{A}_0 X + \tilde{A}_1 X^2
\]
(22)

where for \(\mu \leq 0 \) one has \(\tilde{A}_{-1} = A_{-1} (I - Q), \tilde{A}_0 = A_0 + A_1 Q, \tilde{A}_1 = A_1 \), whereas for \(\mu > 0 \) one has \(\tilde{A}_{-1} = A_{-1}, \tilde{A}_0 = A_0 + EA_{-1}, \tilde{A}_1 = (I - E)A_1 \).

It has been proved that the roots of the polynomials \(\tilde{a}(z) = \det(\lambda(I - \sum_{i=-1}^{M} z^{i+1} \tilde{A}_i)) \) and \(a(z) = \det(\lambda(I - \sum_{i=-1}^{M} z^{i+1} A_i)) \), are the same except for the root \(z = 1 \) of \(a(z) \) which is shifted to zero or to the infinity for \(\tilde{a}(z) \) according to the sign of the drift \(\mu \).

This tiny difference on the roots of \(a(z) \) and \(\tilde{a}(z) \) makes a great difference in the convergence speed of the algorithms for the solution of matrix equations if applied to (20) or to (21). In fact, iterative methods converge faster if applied to equation (21). For more details on this shift technique we refer the reader to [12], [4], [2].

3.2 Functional iterations

Methods based on functional iterations generate a sequence \(\{X_k\}_k \) of matrices converging to the solution \(G \) once \(X_0 \) has been suitably chosen. We recall the three main iterations called natural, traditional and U-based:

\[
X_{k+1} = \sum_{i=-1}^{+\infty} A_i X_k^{i+1} \quad \text{natural,}
\]
(23)

\[
X_{k+1} = (I - A_0)^{-1} \left(A_{-1} + \sum_{i=1}^{+\infty} A_i X_k^{i+1} \right) \quad \text{traditional,}
\]
(24)
\[X_{k+1} = \left(I - \sum_{i=0}^{+\infty} A_iX_k^i\right)^{-1} A_{-1} \quad \text{U-based.} \] (25)

If the initial matrix is \(X_0 = 0 \) then monotonic convergence of \(X_k \) to \(G \) occurs for all the three sequences. Convergence is linear if \(\mu \neq 0 \), sublinear if \(\mu = 0 \). If the initial matrix is \(X_0 = \sigma I \), where \(\sigma = \rho(G) \) and \(\rho(\cdot) \) denotes the spectral radius, then monotonicity is lost but the convergence is faster though still linear. We recall that if \(\mu \leq 0 \) then \(\sigma = 1 \), if \(\mu > 0 \) then \(\sigma \) is the smallest positive solution of the equation \(z = \rho(A(z)) \), where \(A(z) = \sum_{i=-1}^{+\infty} z^{i+1} A_i \).

The three iterations above can be applied to the “shifted” equation (21). Local convergence is guaranteed but no analysis has been carried out concerning the convergence properties related to the choice of \(X_0 \). More details on functional iterations can be found in [4, 13, 18]. For non-skip-free Markov chains one has to compute the matrix \(G \) of (17). In this case it is sufficient to compute the blocks \(G_1, \ldots, G_N \). These matrices can be approximated by means of the sequence of block row vectors \(x_k, k \geq 0 \) generated from \(x_0 \) by:

\[x_{k+1} = [A_{-N}, A_{-N+1}, \ldots, A_{-1}] + \sum_{i=N}^{M+N} A_{-N} x_k C(x_k)^{i-N}. \]

In fact, if \(x_0 = 0 \) the sequence \(\{x_k\} \) monotonically converges to \([G_1, \ldots, G_N]\) of (18). The products \(r_j = x_k C(x_k)^j \) for \(j = 0, \ldots, M \), are computed by means of the equation

\[r_{j+1} = r_j C(r), \quad j = 0, 1, \ldots, M \]

starting with \(r_0 = x_k \). This iteration has been introduced and analyzed in [10].

A faster convergence method is Newton’s iteration [4], [14]. This method generates the sequence \(X_{k+1} = X_k - W_k, k \geq 0, X_0 = 0 \), where \(W_k \) solves the linear matrix equation

\[W_k - K_k \sum_{i=0}^{+\infty} A_i X_k^i \sum_{j=0}^{i-1} X_k^j W_k X_k^{i-j-1} K_k A_{-1} = X_k - K_k A_{-1} \]

and \(K_k = (I - \sum_{i=0}^{+\infty} A_i X_k^i)^{-1} \). Its convergence is quadratic if \(\mu \neq 0 \). The above matrix equation can be solved by means of \(O(m^6) \) arithmetic operations. For QBD Markov chains the complexity reduces to \(O(m^3) \).

3.3 Invariant subspaces method

The invariant subspaces method consists in approximating the minimal nonnegative solution \(G \) of the matrix equation (20) by approximating the left invariant subspace of a suitable block companion matrix. The method can be applied only if \(\mu \neq 0 \).

Define the matrix polynomial \(H(t) = \sum_{i=0}^{N} t^i H_i \) as

\[H(t) = (1 - t)^{N-1}(1 + t)I - \sum_{i=0}^{N} (1 - t)^{N-i}(1 + t)^i A_{i-1}, \]
and the matrices $\hat{H}_i = H_N^{-1} H_i$, $i = 0, \ldots, N - 1$. Set $h = [\hat{H}_0, \ldots, \hat{H}_{N-1}]$ and introduce the matrix

$$F = C(h) + \text{sign}(\mu)yx^T/(x^Ty),$$

where

$$x^T = \begin{bmatrix} x_0^T \hat{H}_1 & x_0^T \hat{H}_2 & \cdots & x_0^T \hat{H}_{N-1} & x_0^T \end{bmatrix}, \quad y = \begin{bmatrix} y_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

and x_0, y_0 are two vectors such that $x_0^T \hat{H}_0 = 0$, $\hat{H}_0 y_0 = 0$.

Define the matrix sign $S = \text{Sign}(F)$ given by

$$S_k = \begin{cases} S_0 = F \\ S_{k+1} = \frac{1}{2} (S_k + S_k^{-1}), \quad k \geq 0. \end{cases}$$

(26)

Then $I - S$ has rank m and by means of a rank revealing QR factorization of $I - S$ it is possible to compute an $Nm \times m$ matrix T whose columns are a basis of the linear space spanned by the columns of $I - S$. Denoting T_1 and T_2 the submatrices of T made up by the rows 1, 2, \ldots, m and $m + 1, m + 2, \ldots, 2m$, it holds

$$G = (T_1 + T_2)(T_1 - T_2)^{-1}.$$

For positive recurrent and transient Markov chains the convergence of S_k to S is quadratic.

The matrix sign S can be computed by means of the iteration (26) which can be stopped if $||S_k - S_{k+1}|| < \epsilon$ for some matrix norm $||\cdot||$ and for a given $\epsilon > 0$. A different approach is to compute S by means of the Schur decomposition of F. Acceleration techniques have been devised based on the computation of some determinants. For more details and for the theory behind this technique we refer the reader to [4] and [1]. Comparisons between cyclic reduction and invariant subspace can be found in [19], [3].

3.4 Logarithmic reduction and cyclic reduction for QBD

Logarithmic reduction [15], [4] and cyclic reduction [5], [4] generate sequences of matrices converging quadratically to G provided that $\mu \neq 0$. If $\mu = 0$, convergence generally turns to linear.

If these iterations are applied to the shifted equation (21) then quadratic convergence still occurs if $\mu = 0$.

3.5 Logarithmic reduction for QBD

Logarithmic reduction is synthesized by the following equations:

$$B_{-1}^{(k+1)} = (C^{(k)})^{-1}(B_{-1}^{(k)})^2,$$

$$B_1^{(k+1)} = (C^{(k)})^{-1}(B_1^{(k)})^2, \quad k \geq 0,$$

(27)
where
\[C^{(k)} = I - B^{(k)}_1 B^{(k)}_1 - B^{(k)}_1 B^{(k)}_{-1} \]
and
\[B^{(0)}_{-1} = (I - A_0)^{-1} A_{-1}, \quad B^{(0)}_{1} = (I - A_0)^{-1} A_{1}. \]
The sequence
\[G_k = B^{(0)}_{-1} + \sum_{i=1}^{k} \left(\prod_{j=0}^{i-1} B^{(j)}_1 \right) B^{(i)}_{-1} \]
converges to \(G \).

Logarithmic reduction can be applied to the shifted equation (22) by defining
\[B^{(0)}_{-1} = (I - \tilde{A}_0)^{-1} \tilde{A}_{-1}, \quad B^{(0)}_{1} = (I - \tilde{A}_0)^{-1} \tilde{A}_{1}. \] The sequence \(G_k \) of (29) converges to the solution \(\tilde{G} \) of (22).

3.6 Cyclic reduction for QBD

Cyclic reduction is synthesized by the following equations:
\[
K^{(k)} = (I - A^{(k)}_0)^{-1}, \quad A^{(k+1)}_{-1} = A^{(k)}_{-1} K^{(k)} A^{(k)}_1, \quad A^{(k)}_0 = A^{(k)}_0 + A^{(k)}_{-1} K^{(k)} A^{(k)}_1 + A^{(k)}_1 K^{(k)} A^{(k)}_{-1}, \quad A^{(k+1)}_1 = A^{(k)}_1 K^{(k)} A^{(k)}_1, \quad A^{(k)}_0 = A^{(k)}_0 + A^{(k)}_1 K^{(k)} A^{(k)}_{-1} \]
for \(n = 0, 1, \ldots, \) and \(\tilde{A}^{(0)}_0 = A_0, \quad \tilde{A}^{(0)}_1 = \tilde{A}_1, \) \(i = -1, 0, 1. \) The sequence
\[G_k = (I - \tilde{A}^{(k)}_0)^{-1} A_{-1} \]
converges to \(G. \)

Cyclic reduction can be applied to the shifted equation (22) by defining
\[\tilde{A}^{(0)}_0 = \tilde{A}_0, \quad \tilde{A}^{(0)}_1 = \tilde{A}_1, \) \(i = -1, 0, 1. \) If \(\mu \leq 0 \) the sequence \(G_k \) of (31) converges to \(G. \) If \(\mu > 0 \) the sequence generated by \(G_k = (I - \tilde{A}^{(k)}_0)^{-1} \tilde{A}_{-1} \) converges to \(G. \)

3.7 Cyclic reduction for M/G/1-type Markov chains

Cyclic reduction can be extended to M/G/1 Markov chains by means of a functional interpretation. Given a matrix power series \(F(z) = \sum_{i=0}^{\infty} z^i F_i \) define the matrix power series
\[F_{\text{even}}(z) = \frac{1}{2} (F(\sqrt{z}) + F(-\sqrt{z})) = \sum_{i=0}^{\infty} z^{2i} F_{2i}, \]
\[F_{\text{odd}}(z) = \frac{1}{2} \sqrt{z} (F(\sqrt{z}) - F(-\sqrt{z})) = \sum_{i=0}^{\infty} z^{2i+1} F_{2i+1}, \]
Let \(A^{(0)}(z) = \sum_{i=-1}^{+\infty} z^{i+1} A_i \), \(\hat{A}^{(0)}(z) = \sum_{i=0}^{+\infty} z^i A_i \), and define
\[
K^{(k)}(z) = (I - A_{\text{odd}}^{(k)}(z))^{-1},
A^{(k+1)}(z) = z A_{\text{odd}}^{(k)}(z) + A_{\text{even}}^{(k)}(z) K^{(k)}(z) A_{\text{even}}^{(k)}(z),
\hat{A}^{(k+1)}(z) = \hat{A}_{\text{even}}^{(k)}(z) + \hat{A}_{\text{odd}}^{(k)}(z) K^{(k)}(z) A_{\text{even}}^{(k)}(z).
\]
(32)

Then the sequence
\[
G_k = (I - \hat{A}^{(k)}(0))^{-1} A_{-1}
\]
(33)
converges to \(G \). Convergence is quadratic if \(\mu \neq 0 \), and is generally linear if \(\mu = 0 \).

Cyclic reduction can be applied to the shifted equation (21) by defining
\[
A^{(0)}(z) = \sum_{i=-1}^{+\infty} z^{i+1} \hat{A}_i, \hat{A}^{(0)}(z) = \sum_{i=0}^{+\infty} z^i \hat{A}_i. \quad \text{If } \mu \leq 0 \text{ the sequence } G_k \text{ of (33) converges to } G. \quad \text{If } \mu > 0 \text{ the sequence generated by } G_k = (I - \hat{A}^{(k)}(0))^{-1} \hat{A}_{-1} \text{ converges to } G. \quad \text{If cyclic reduction is applied to the shifted equation (21) then convergence is quadratic even if } \mu = 0.
\]

Concerning the different ways for implementing cyclic reduction we refer the reader to the book [4, Chapter 7]. One of the most efficient implementations relies on the technique of evaluation/interpolation where the computation of the coefficients of the matrix power series \(A^{(k+1)}(z) \) is performed by means of a point-wise computation of the right-hand side of (32) at the \(q \)th roots of the unity, followed by an interpolation stage. Here \(q \) must be a sufficiently large integer such that \(\sum_{i \geq q} ||A_i^{(k+1)}|| \) is negligible for some matrix norm \(|| \cdot || \).

Such an integer \(q \) exists for the decay to zero of the coefficients \(A_i^{(k+1)} \) and can be efficiently computed by means of a suitable technique of [6]. The method obtained in this way is called \textit{point-wise cyclic reduction}, its efficiency relies on the use of FFT for performing the evaluation and the interpolation stages [6]. Its complexity is related to the number of interpolation points needed in the computation, or, equivalently, to the value of the numerical degrees of the matrix power series \(A^{(k)}(z) \).

3.8 The Ramaswami reduction

The Ramaswami reduction [23], [4], [7] allows one to reduce an M/G/1-type Markov chain into a QBD process with blocks of infinite size. In this way, algorithms for solving a QBD can be adapted for solving an M/G/1-type Markov chain.

Define the matrices
\[
A_1 = \begin{bmatrix}
0 & 0 \\
I & 0 \\
I & 0 \\
\vdots & \ddots & \ddots \\
0 & \cdots & \cdots & \cdots & \cdots
\end{bmatrix},
\]
(34)
\[A_0 = \begin{bmatrix} A_0 & A_1 & A_2 & \cdots \\ 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \quad (35) \]

and

\[A_{-1} = \begin{bmatrix} A_{-1} & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}. \quad (36) \]

Then the matrix

\[G = \begin{bmatrix} G & 0 & 0 & \cdots \\ G^2 & 0 & 0 & \cdots \\ G^3 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \quad (37) \]

is the minimal nonnegative solution of the equation \(G = A_{-1} + A_0 G + A_1 G^2 \), where \(G \) is the minimal nonnegative solution of (2).

Logarithmic reduction and cyclic reduction can be applied for computing \(G \) in order to compute \(G \). The shift technique of section 3.1 can be applied either to the original equation or to the infinite QBD obtained after the Ramaswami reduction.

4 Fortran 95 subroutines

Most part of the algorithms described in previous sections has been implemented in Fortran 95. The subroutines can be called by the user inside a main program, using an appropriate module, and linking then the program with the libraries libsmcsolver.a, lapack95, lapack, blas (see Section 6 for more detail on compilation).

Appendix A list all the symbols of functions, subroutines, and variables defined in the library libsmcsolver.a. Most of them are used internally. We document here the subroutines and the variables that are of interest for a user who writes his own main program and wishes to use the algorithms implemented in the library.

4.1 Basic Routines

The first two subroutines \texttt{crqbd} and \texttt{lrqbd} compute the minimal solutions \(G, R \) and \(U \) of the equations (2). They have the same syntax, i.e.,

\begin{verbatim}
use smc_int
subroutine crqbd(An1, A0, A1, G, R, U, doshift, dogth,&
 drift, nerror, maxit)
subroutine lrqbd(An1, A0, A1, G, R, U, doshift, dogth,&
 drift, nerror, maxit)
\end{verbatim}
• \(A_1, A_0 \) and \(A_1 \) are the matrix variables containing the matrices \(A_{-1}, A_0 \) and \(A_1 \) respectively;
• The output variable \(G \) contain the solution \(G \);
• The optional output variables \(R \) and \(U \) contain the solutions \(R \) and \(U \), respectively;
• the logical variables \(\text{doshift} \) and \(\text{dogth} \), if \(\text{true} \), perform the shift acceleration of \cite{8, Section III} and the GTH trick of \cite{11} for improving numerical stability. This trick cannot be applied if the shift acceleration is performed;
• \(\text{drift} \) contains the value of the drift \(\mu \);
• The optional input variables \(\text{nerror} \) and \(\text{maxit} \) contain the error bound for the stop condition in the form of an integer exponent (the actual error is \(\text{epsilon}(1.d0) * 10.0d0 ** \text{nerror} \), default \(\text{nerror} = 0 \)) and the maximum number of allowed iterations (by default \(\text{maxit}=50 \)), respectively.

The subroutines \texttt{pwcr} and \texttt{spwcr} compute the solution of the equation (5), (or to be more precise of (6)) by means of the algorithm of point-wise cyclic reduction without the shift acceleration (\texttt{pwcr}) and with the shift acceleration (\texttt{spwcr}). Their sintax is the same, i.e.,

\begin{verbatim}
use pwcr_interface
subroutine pwcr(A, eps, G, err, maxit, intpmax)
subroutine spwcr(A, eps, G, err, maxit, intpmax)
\end{verbatim}

• \(A \) is a three-way array where \(A(:,:,k) \) contains the block \(A_{k-2} \) for \(k = 1, 2, \ldots, K+2 \), (where \(K \) is such that \(\sum_{i=-1}^{K} A_i \) is numerically stochastic);
• \(\text{eps} \) contain an error bound used in the stop condition (the default value is \(\text{eps}=1e-12 \));
• The output variable \(G \), contains the solution \(G \) of the matrix equation (6);
• \(\text{err} \) is the residual error;
• \(\text{maxit} \) and \(\text{intpmax} \) are the maximum number of iterations (by default \(\text{maxit}=50 \)) and an index of the maximum number of interpolation points (= \(256 * 2^{\text{intpmax}} \)) (by default \(\text{intpmax}=1 \) and the number of interpolation points is 256), respectively.

The subroutine \texttt{fi} computes the solution \(G \) of (2) or (6) by means of functional iterations. The syntax is

\begin{verbatim}
use fi_int
subroutine fi(A, doshift, method, eps, maxit,&
x0, G, drift, err)
\end{verbatim}

• \(A \) is a three-way array: for QDB problems \(A(:,:,k) \) contains the blocks \(A_{-1}, A_0, A_1 \), for M/G/1 problems contains the blocks \(A_{-1}, A_0, \ldots, A_K \), (where \(K \) is such that \(\sum_{i=-1}^{K} A_i \) is numerically stochastic);
• \(\text{doshift} \) is an optional logical variable, if \(\text{true} \) it performs the shift technique (default \(\text{doshift}=.false. \)).
• method is an optional integer variable which selects the functional iteration: 1→Natural iteration, 2→Traditional iteration, 3→Method based on the matrix U (default method=3);
• optional input variables eps and maxit contain an error bound on the stop condition (by default eps=1e-12) and the maximum number of iterations (by default maxit=50);
• X_0 is an optional input variable which contains the initial approximation (by default $X_0=0$ if doshift=.true. and $X_0=rI$ if doshift=.false. with $r=\rho(G)$);
• output variable G contains the solution G of the matrix equation (2) or (6);
• output variables drift and err contain the drift μ and the residual error, respectively.

The subroutine is implements the invariant subspace method for solving (2) or (6). Its syntax is

\begin{verbatim}
use is_int
subroutine is(A, method, eps, maxit, G, drift, err)
\end{verbatim}

• A is a three-way array: for QDB problems $A(:,:,k)$ contains the blocks A_{-1}, A_0, A_1, for M/G/1 problems contains the blocks A_{-1}, A_0, \ldots, A_K, (where K is such that $\sum_{i=-1}^{K} A_i$ is numerically stochastic);
• method is an optional integer variable which selects the algorithm for computing the invariant subspace: 1→ Matrix Sign Iteration; 2→ Matrix Sign Iteration with the Balzer acceleration; 3→ Schur Decomposition; by default method=2;
• The optional input variables eps and maxit contain an error bound on the stop condition (by default eps=1e-12) and the maximum number of iterations (by default maxit=50);
• The output variable G contain the solution G of the matrix equation (2) or (5);
• The output variables drift and err contain the drift μ and the residual error, respectively.

4.2 Auxiliary Routines

The following routine converts a G/M/1 problem in an M/G/1 problem. Its syntax is

\begin{verbatim}
use smc_int
subroutine gmitomg1(A, AA, v)
\end{verbatim}

• A is the input three-way array where $A(:,:,k)$ contains the block A_{2-k} for $k = 1, 2, \ldots, K + 2$ of the original G/M/1 problem.
• \(AA \) is the output three-way array where \(AA(:,:,k) \) contains the block \(A_{k-2} \) for \(k = 1,2,\ldots,K+2 \) of the equivalent \(M/G/1 \) problem;
• \(v \) is a vector containing the strictly positive stationary probability vector of \(A \) that is computed during the conversion.

The following routines compute \(U \) from \(G \) and \(R \) from \(U \), respectively, in QBD problems. Their syntax is

use smc_int
subroutine gtou(A0, A1, G, U)
subroutine utor(A1, U, R)
• \(A0 \) and \(A1 \) are the matrix variables containing the matrices \(A_0 \) and \(A_1 \) respectively;
• The variables \(G, R \) and \(U \) contain the solutions \(G, R \) and \(U \), respectively;

The following routines compute the norm of the differences between left and right side of equations (2), (6), (11) for the numerical solutions. Their syntax is

use smc_int
subroutine qbdrres(Am1, A0, A1, R, res)
subroutine qbdures(Am1, A0, A1, U, res)
subroutine rresidual(A, R, res)
use fi_int
subroutine gresidual(A, G, res)
• \(Am1, A0 \) and \(A1 \) are the matrix variables containing the matrices \(A_{-1}, A_0 \) and \(A_1 \) respectively, in the QBD problem;
• \(A \) is a three-way array: for \(M/G/1 \) problems \(A(:,:,k) \) contains the blocks \(A_{k-2} \), for \(k = 1,2,\ldots,K+2 \) for \(G/M/1 \) problems \(A(:,:,k) \) contains the blocks \(A_{2-k} \) for \(k = 1,2,\ldots,K+2 \);
• The variables \(G, R \) contain the numerical solutions \(G \) and \(R \) respectively;
• \(res \) is the computed norm.

To compute \(\pi \) we have the following routines:

use pi_int
subroutine qbdpi(Am1, A0, A1, Bm1, B0, B1, R, &
maxnc, epspi, pi0, pi, pinc)
subroutine mgipi(A, B0, B, Bm1, G, &
maxnc, epspi, pi0, pi, pinc)
subroutine gmipi(A, B, B0, Bm1, R, &
maxnc, epspi, pi0, pi, pinc)
• for QBD problems \(Am1, A0 \) and \(A1 \) are the matrix variables containing the matrices \(A_{-1}, A_0 \) and \(A_1 \) respectively;
• A is a three-way array: for M/G/1 problems $A(:,:,k)$ contains the blocks A_{k-2}, for $k = 1, 2, \ldots, K + 2$

• A is a three-way array: for G/M/1 problems $A(:,:,k)$ contains the blocks A_{2-k} for $k = 1, 2, \ldots, K + 2$;

• for QBD problems B_{m1}, B_0 and B_1 are the matrix variables containing the matrices B_{-1}, B_0 and B_1 respectively;

• B_0 is the matrix B_0;

• B_1 for QBD and M/G/1 is the matrix B_1;

• B_{m1} for QBD and M/G/1 is the matrix B_{-1}; for G/M/1 is the matrix B_1;

• B is a three-way array: for M/G/1 problems $B(:,:,k)$ contains the blocks B_{2-k}, for $k = 1, 2, \ldots, K + 2$, for G/M/1 problems it contains the blocks B_{k-2} for $k = 1, 2, \ldots, K + 2$;

• G, R contain the solutions G and R respectively;

• maxnc contains the maximum number of vectors π_k to compute.

• epspi contain an error bound used in the stop condition (the default value is $\text{eps}=1\times10^{-12}$);

• π_0, π are the π_0 and a vector containing the π_k of (3) for QBD, of (7) and (9) for M/G/1, and of (12) and (13) for G/M/1 problems, respectively;

• pinc is the number of computed blocks of components of π.

4.3 Internal Routines

function binomial(n,k)

• n, k are integers

• the output of the function is a double precision real.

4.4 Blas and Lapack Routines

There are very few calls from the SMCSOLVER routines to Blas, Lapack and Lapack95 routines:

`lapack`
`blas`
`gesv`
`getrf`
`getri`
`gees`
`dgeqp3`
`dorgqr`

These, in turn, call some other Blas and Lapack routines, and so on: as a rule, names of Blas, Lapack and Lapack95 routines cannot be reassigned.
4.5 Global Variables

Variables in Module `ponte_f.f`:

- **fdrift**
 Some routines save the drift value into this variable; this has been a last minute emergency patch and will be changed in future versions.

- **debug**
 If `debug=.true.` some debugging printouts will appear in some situations; it is not a systematic feature, it did help in debugging the code; anyway the user can add some code lines like
  ```fortran
  if (debug) write(*,*) "some message or some data..."
  ```
 anywhere in the code to check for some values, and switch the printouts on or off just changing the value of the variable `debug`.

- **verb**
 This variable controls the verbosity of the printouts during execution of code; if `verb=.true.` at each iteration there will be a printout otherwise just a `*` will be printed.

Variables in Module `smc_tools`:

- **dp**
 `dp=kind(0.d0)` is used in dimensioning real double precision, as a shortcut.

- **info**
 Usually 0, is different from 0 if some allocation has failed.
5 The graphical interface

We have implemented a simple Graphical Interface in C relying on the GTK+ 2.0 graphical libraries.

The executable runs in Linux Workstations where the corresponding GTK shared libraries are available.

The Fortran routines are usually linked statically, so that the executable needs neither Fortran Compiler nor Fortran run-time libraries to run.

A fully statically linked program is discouraged by GTK+ developers.

5.1 The menus

By means of menus in the main window (Figure 1), the user can easily choose the kind of problem (QBD, M/G/1, G/M/1), either by loading the input data from some external ASCII files or by loading one of the examples provided in the package.

Several formats are supported for the input files. In a first step the file is opened, read and analyzed in an attempt to discover its format; in a second step the matrices are allocated, the file is re-read and the matrices are loaded in memory. Fortran formats need some simple header with dimensioning data. Matlab formats rely on counting number of lines and number of floats in a line. More detail in the next section.
Selecting one of the examples from the Examples menu, an example window (Figure 2) will appear, allowing the user to to set up some parameters for the selected Example.

From the main window’s menu Algorithms (Figure 3) the user can choose an algorithm among Cyclic Reduction, Logarithmic Reduction, Functional Iterations, Invariant Subspace. For each algorithm the user can set additional optional parameters like the shift acceleration, the diagonal adjustment, or can modify the values of the maximum number of iterations (default 50, range from 5 to 15000), the number of interpolations points in cyclic reduction (default 512, range from 256 to 65536), the error bound for the stop condition (default 10^{-12}, range from 10^{-5} to 10^{-16}). Moreover, in the case of the Functional Iterations Algorithm, the starting matrix can be read from external file (internal choices are the null and the identity matrices).
For each kind of problem, the user can select the goals (Figure 4), for instance, computing G, R, U or π. The length of π is selectable in the same menu.
Warnings are flashed in the status line of the window for inconsistent choices of the user and also if the selected algorithms or options are not available.

The Options menu allows to select the level of verbosity and the presence of timing information. The debug option will print on the tty some messages of interest for the developers only. The number of digits to write in saving ASCII outputs files can be set up in Options Menu too.

The use of multithread support enables the user to start/stop a computation just by pressing a button.

During the numerical computation, partial results, timings, and information on the evolution of the computation are displayed in real time on a scrollable viewport of the main window. The buffer of this viewport with the log of the session can be appended to a file.

A simple online window help is available.

5.2 Matrix Editor

A viewing and editing graphical tool allows to display and edit input matrices and to view and compare output matrices. This is performed in a graphical way by representing each element of the matrices as a small gray or colored square, where the intensity varies according to the magnitude of the number.

A good choice of the color scale allows an immediate and intuitive viewing of the structure of the matrix:
The standard color scale is a linear one. User color scale can be linear in the range \([0, 1]\) or in the range between the minimum nonzero value and the maximum value; adaptive scale is a non linear color scale, that attempts to assign as many of the 256 levels as possible.

The numerical values of the entries are displayed and edited in a separate small window as the user moves the cursor on the colored squares of the matrix area.

To edit a value, click a mouse button: the entry with the matrix indexes will freeze, and the entry with the value becomes editable; change the value and finalize the change with the Enter key.

In View/Edit Matrix A the block index varies from 1 to \(K + 2\); these values for QBD problems corresponds to \(A_{-1}, A_0, A_1\), for M/G/1 corresponds to \(A_{-1}, A_0, A_1, \ldots, A_K\), and for G/M/1 corresponds to \(A_1, A_0, A_{-1}, \ldots, A_{-K}\).

Matrices \(G, R, U\), or the vector \(\pi\) can be viewed but not edited. It is possible to compare them with matrices present in a file: comparison will compute the
norm of the difference between the matrix present in memory and the matrix read from the target file.

5.3 File Formats

The computed solutions (matrices, vectors) can be saved in several ASCII formats. Moreover a sparse matrix format is supported for reading or writing data (computation do not use sparse matrix format internally).

Figure 7: Graphical User Interface: saving A

Remember that the number of digits that are written for every number saved in ASCII Files is selectable in the Options Menu (Figure 5). The choices are 8, 15, 16, 17 digits in the mantissa; the default is 16 digits.

We list all the available Save File Formats:

Save G or U or R:

- **Matlab**
 the floats of a matrix row are written in one line, Matlab counts the number of lines and the number of floats in each line for detecting the number of rows and columns of the matrix;

- **Fortran ASCII 2dim+data**
 the first line holds two integers, the number of rows and columns of the matrix; the second (very long) line holds all the floats, column after column, with a space between floats and at the beginning of each line;

- **Fortran ASCII 1dim+data**
 the matrix is a square one, and the first line holds one integer, the number of rows equal to the number of columns; the second (very long) line holds
all the floats, column after column, with a space between floats and at the beginning of each line, as before.

Save G, U, R (QBD only):

- **Matlab dir with 3 files**
 a directory is created and the 3 matrices G, R, U are saved as Matlab ASCII matrices in the files G, R, U.

- **Fortran 3 x (2 dim + data)**
 the 3 matrices G, R, U are written in one file, one after the other, each in two lines, first line holds two integers, the number of rows and of columns of the matrix; the second (very long) line holds all the floats, column after column, with a space between floats and at the beginning of each line;

- **Fortran 1 dim + 3 x data**
 the first line holds one integer, the number of rows or of columns (they are equal), the second line holds all the floats of the 3 matrices G, R, U, one after the other, column after column, with a space between floats and at the beginning of each line.

Save Pi:

- **Matlab**
 π is written in Matlab ASCII style, as a single line;

- **Fortran dim+data**
 The file has two lines: the first line hold one integer, the number of components of π, and the second line holds the floats, with a space between floats and at the beginning of each line.

Save A:

- **Matlab dir with files**
 a directory is created; each of the blocks A(;;k), with k = 1, 2, . . . , K + 2, is saved in a separate file, in Matlab ASCII style and with names A00001, A00002,

- **Matlab single file**
 the blocks A(;;k), with k = 1, 2, . . . , K + 2, are put side by side in one row; the resulting rectangular matrix is written in the file, in Matlab ASCII style. The number of columns divided the number of rows is the number of (square) blocks.

- **Fortran #blocks, + repeated (dims, data)**
 the first line holds one integer, the number of blocks; for each block there follows two lines, the first with two integers, row and columns number, the second (very long) line holds all the floats of the block, column after column, with a space between floats and at the beginning of each line;

- **Fortran #blocks, dims, + all data**
 the first line holds two integers, the number of blocks and the number of row (that is equal to the number of columns); the second (very long) line holds all the floats, block after block, and in each block column after column, with a space between floats and at the beginning of each line;
• **Fortran Sparse Matrix format**
 the first line has 3 integers, the number of blocks, of rows, and of columns; there follows one line for each non zero term of the matrix, holding 3 integers and one float, i.e. block index k, row index i, column index j, and the float $A(i, j, k)$.

Save B:

- **B0 Matlab**
 the floats of a matrix row are written in one line, Matlab counts the number of lines and the number of floats in each line for detecting the number of rows and columns of the matrix;

- **BN1 Matlab**
 the floats of a matrix row are written in one line, Matlab counts the number of lines and the number of floats in each line for detecting the number of rows and columns of the matrix;

- **B Matlab**
 the blocks $B(:,:,k)$, with $k = 1, 2, \ldots, K + 2$, are put side by side in one row; the resulting rectangular matrix is written in the file, in Matlab ASCII style. The number of columns is the product of the number of blocks by the number of columns of each block. One of the two numbers must be known, otherwise reconstructing the three way matrix B from the file will be impossible.

- **B0 Fortran**
 the first line holds two integer, rows and columns numbers; the second line holds all the floats, column after column, with a space between floats and at the beginning of each line;

- **BN1 Fortran**
 the first line holds two integer, rows and columns numbers; the second line holds all the floats, column after column, with a space between floats and at the beginning of each line;

- **B Fortran**
 the first line holds three integers, the number of blocks, the number of rows and the number of columns of the three way matrix B; for each block there is one line holding all the floats, column after column, with a space between floats and at the beginning of each line;

Read Files:

The program will do its best to understand the format of the input file and to read the data. It will detect the presence of ASCII chars > 127, and invalidate the file. It will discard lines beginning with # or ! or % or @ considering them comment text. It will try to detect Matlab ASCII files, as files than consists of consecutive lines with the same number of floats and nothing else (no comments or extra chars allowed in Matlab files!). Fortran data files are
supposed to have some form of header with integers referring to dimensions of
the matrices. Sparse format files will have lines with 3 indexes and a float.

Be aware that the routine that analyze the floats will not read correctly very
long integers (> 9 digits) or very long float (mantissa > 17 digits or exponent
> 3 digits).

6 Compiling SMCSolver_1.2

To compile the program you will need:

• A Linux Workstation, complete with usual development programs;
• GNU gcc, make;
• libraries and header files of gtk+-2, gthread-2.0, ncurses and librt;
• A Fortran 95 Compiler like Lahey/Fujitsu (R) lf95, of Intel (R) Fortran
 Compiler ifort or f95 NAG(R) Fortran Compiler or GNU g95;
• the SMCSolver_1.2 sources (from http://bezout.dm.unipi.it/SMCSolver/
 or from one of the authors by e-mail).

Untar the sources, and change the make.inc, uncommenting the lines for
your Fortran Compiler and commenting the lines for different Fortran Compil-
ers. In case you mess up the file, make.inc.default has the original version.
The files make.inc.g95, make.inc.ifort, make.inc.lf95, make.inc.nag are
samples tested to work respectively with GNU g95, Intel Fortran, Lahey For-
tran, NAG Fortran.

If you have installed on your Workstation optimized versions of BLAS, LA-
PACK, LAPACK95 libraries and modules, let the variable FFLIBS point to the
directory containing them. Otherwise you can use the minimum set of routines
extracted from BLAS, LAPACK, LAPACK95 and included in the distribution.
In this case the compiler first step will be to compile the required libraries and
modules.

Remember that usually the linker requires that a library has a name be-
ingin with lib (like libblas.a or liblapack.a) and refers to it with the flags -l
(for modules directory), -L (for library directory), -l (for libraries, like -lblas
-llapack).

When you are ready to compile, you can make the program:

• make will compile the program SMCSolver;
• make clean will delete modules, objects and the executable;
• make cleanall will delete libraries, modules, objects and the executable;
• make test-lib will compile the library libsmcsolver.a and a sample
 main program test-lib.f90, linking it to the library; In this case C
 compiler and graphic libraries are not needed.
• make dist must NOT be run by users, as it will change the TIMESTAMP
 and recreate a SMCSolver_1.2.ACTUAL_DATE.tgz.

26
• several other less interesting targets are available for the make command.

Several warnings from the compilers are normal. Errors in compilation can arise from several situations:

• if BLAS, LAPACK, LAPACK95 libraries and modules are not present in the system, the minimum set of them should be created by Fortran Compiler as first step. These routines are well known and well debugged: an error at this stage could mean a wrong flag passed to Fortran compiler in the file make.inc.

• gcc will then compile the 11 C files, without linking them. An error at this stage may point to missing or misplaced headers or non standard gcc on your Linux installation.

• then the Fortran Compiler will compile the 15 Fortran 90 files. It may fail if the Fortran Compiler lines in the make.inc are not correct for your compiler.

• last step, the Fortran Compiler has to link all the objects with both static and run time libraries, and this may fail if some library is not available, or if some option in make.inc is not correct for your Fortran Compiler.

• if you change the Fortran Compiler, remember to do a make cleanall as the Fortran libraries and modules of one Fortran Compiler will NOT work with a different Compiler.

SMCSolver will need several shared run time libraries to execute and will not start if some of these are missing. Moreover several icons and graphical details of the windows are loaded dynamically from files of the running host by gtk+-2.

If you are in doubt about the installed version of gtk libraries, use the command

pkg-config --modversion gtk+-2.0

Any version 2.x.y should be ok.

Compiling the library libsmcsolver.a does not requires the graphical libraries. To use a subroutine of the library, a Fortran 95 main program must declare the use of the appropriate modules, and must be linked with the library libsmcsolver.a, with lapack95, lapack and blas.

A simple example is the file test-lib.f90.

Acknowledgment

This work has been partially supported by MIUR grant number 2004015437.
References

APPENDIX A

We list here the content of all the Fortran 95 modules:

```fortran
module fft_interface.mod
  subroutine iffts1
  subroutine ffts2
  subroutine ftb1
  subroutine ftb2
  subroutine iftb1
  subroutine iftb2
  subroutine twiddle
  subroutine itwiddle
module fi_int.mod
  subroutine fi
  subroutine fi_n
  subroutine fi_t
  subroutine fi_u
  subroutine gresidual
module is_int.mod
  subroutine is
  function drft_mg1
module pi_int.mod
  subroutine qbdpi
  subroutine mg1pi
  subroutine gm1pi
module ponte_ff.mod
  A
  B
  G
  R
  U
module pwcr_interface.mod
  subroutine pwcr
  subroutine computeG
  subroutine spwcr
  subroutine scomputeG
module roots.mod
  wr
  wi
  wwr
  wwi
module schur_interface.mod
  subroutine schur
  subroutine test
  subroutine sc1p
  subroutine sschur
  subroutine stest
  subroutine sc2p
  subroutine scc2p
  subroutine sc1
  subroutine sc2
  subroutine prodc
  subroutine means
  subroutine pmeans
```

30
subroutine scc2
subroutine solver
subroutine solvec

module smc_int.mod

subroutine drft
subroutine gth
subroutine crqbd
subroutine lrqbd
subroutine bgth
subroutine shift
subroutine gm1tomg1
subroutine rresidual
subroutine gtou
subroutine utor
subroutine qbdrres

module smc_tools.mod

dp
info

Other Routines:

function binomial
function sel
subroutine append_fifo
subroutine print_it
subroutine print_it_nolf
subroutine print_it_nolf_